2.6 – Geometric Proofs (Day 2)

Statement	Reason
1. <i>m</i> ∠1 = <i>m</i> ∠2	1. Given
2. <i>m</i> ∠3 = <i>m</i> ∠4	2. Given
3. $m\angle 2 + m\angle 3 = 180^{\circ}$	3. Linear Pair Postulate
4. $m \angle 1 + m \angle 4 = 180^{\circ}$	4. Substitution Property

EX 2) Given: $m\angle 2 = m\angle 3$, $\angle 1$ and $\angle 2$ are supplementary

Statement	Reason
1. ∠1 and ∠2 are supplementary	1. Given
2. $m \angle 1 + m \angle 2 = 180^{\circ}$	2. Definition of Supplementary ∠s
$3. m \angle 2 = m \angle 3$	3. Given
4. $m \angle 1 + m \angle 3 = 180^{\circ}$	4. Substitution Property
5. ∠1 and ∠3 are supplementary	5. Definition of Supplementary ∠s

2.6 – Geometric Proofs (Day 2)

EX 3) Given: $\angle 1$ and $\angle 2$ are right angles

Prove: $\angle 1 \cong \angle 2$

STATEMENTSREASONS1. $\angle 1$ and $\angle 2$ are right $\angle s$ 1. Given2. $m\angle 1 = 90^{\circ}$, $m\angle 2 = 90^{\circ}$ 2. Definition of right $\angle s$ 3. $m\angle 1 = m\angle 2$ 3. Transitive / Substitution Property4. $\angle 1 \cong \angle 2$ 4. Definition of $\cong \angle s$

EX 4) Given: $\angle 1 \cong \angle 3$ Prove: $\angle 2 \cong \angle 4$

STATEMENTS	REASONS
1. ∠1≅ ∠3	1. Given
 ∠1 and ∠2 are vertical ∠s, ∠3 and ∠4 are vertical ∠s 	2. Definition of vertical ∠s
3. $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$	3. Vertical ∠s Theorem
4. ∠1≅∠4	4. Transitive / Substitution Property
5. ∠2≅∠4	5. Transitive / Substitution Property

EX 5) Given that $\overline{AB} \cong \overline{CD}$, prove that $\overline{AC} \cong \overline{BD}$.

STATEMENTS

REASONS

1.
$$AB \cong CD$$

- $2. \quad AB = CD$
- 3. BC = BC
- 4. AB + BC = AC, BC + CD = BD
- 5. CD + BC = AC $\left(\text{or } BC + AB = BD\right)$
- $6. \quad AC = BD$
- 7. $\overline{AC} \cong \overline{BD}$

- 1. Given
- 2. Definition of \cong segments
- 3. Reflexive Property
- 4. Segment Addition Postulate
- 5. Substitution Property
- 6. Transitive Property
- 7. Definition of \cong segments

EX 6) Given: $m\angle LAN = 30^{\circ}$, $m\angle 1 = 15^{\circ}$

Prove: \overrightarrow{AM} bisects $\angle LAN$

STATEMENTS

REASONS

- 1. $m\angle LAN = 30^{\circ}$
- 2. $m \angle LAN = m \angle 1 + m \angle 2$
- 3. $m \angle 1 = 15^{\circ}$
- 4. $30^{\circ} = 15^{\circ} + m \angle 2$
- 5. $m \angle 2 = 15^{\circ}$
- 6. $m \angle 1 = m \angle 2$
- 7. $\angle 1 \cong \angle 2$
- 8. \overrightarrow{AM} bisects $\angle LAN$

- 1. Given
- 2. ∠ Addition Postulate
- 3. Given
- 4. Substitution Property
- 5. Subtraction Property
- 6. Transitive / Substitution Property
- 7. Definition of $\cong \angle s$
- 8. Definition of \angle bisector

2.6 – Geometric Proofs (Day 2)

EX 7) Given: $\angle 1$ and $\angle 2$ are complementary, $\angle 2$ and $\angle 3$ are complementary

Prove: $\angle 1 \cong \angle 3$

HW: 2-6 Practice #8, 13, 20-22, 30 & complete remaining proofs (if applicable)