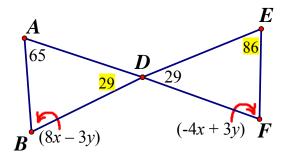
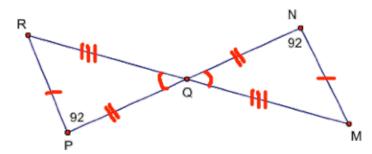

Congruent figures: When two figures are congruent their corresponding angles and corresponding sides are congruent.

In the figures below $\triangle ABC \cong \triangle XYZ$ which is read, "Triangle *ABC* is congruent to triangle *XYZ*." The order in which the triangle is named is important; the corresponding parts (angles and sides) must match up.



EX 1) Identify the congruent corresponding parts in the triangles above.

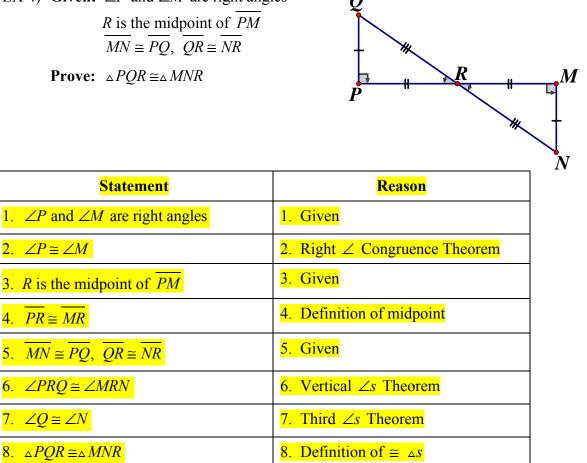
$\angle A \cong \angle X$	$\overline{AB} \cong \overline{XY}$
$\angle B \cong \angle Y$	$\overline{BC} \cong \overline{YZ}$
$\angle C \cong \angle Z$	$\overline{CA} \cong \overline{ZX}$



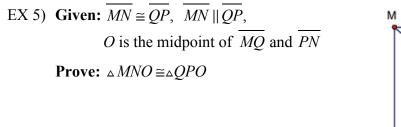
EX 2) Given that $\triangle ABD \cong \triangle FED$, solve for x and y.

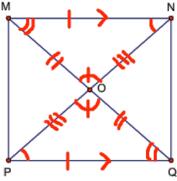
-4x + 3y = 65
8x - 3y = 86 (by Third Angles Theorem)
4x = 151
<i>x</i> = 37.75
8(37.75) - 3y = 65
<i>y</i> = 72

EX 3) Determine whether the triangles are congruent. Given Q is the midpoint of both RM and \overline{PN} , and $\overline{RP} \cong \overline{NM}$. Justify your reasoning.


 $\triangle PRQ \cong \triangle NMQ$. It is given that Q is the midpoint of \overline{RM} and \overline{PN} , so $\overline{RQ} \cong \overline{MQ}$ and $\overline{PQ} \cong \overline{NQ}$ by the definition of a midpoint. It is also given that $\overline{RP} \cong \overline{NM}$.

The figure is labeled with $m \angle P = 92$ and $m \angle N = 92$, so $\angle P \cong \angle N$ by the definition of congruent angles. $\angle PQR \cong \angle NQM$ by the Vertical Angles Theorem, therefore $\angle R \cong \angle M$ by the Third Angles Theorem.


 $\triangle PRQ \cong \triangle NMQ$ because the corresponding parts (sides and angles) of the triangles are congruent.


EX 4) Given: $\angle P$ and $\angle M$ are right angles *R* is the midpoint of *PM*

Prove: $\triangle PQR \cong \triangle MNR$

4-4 Congruent Triangles

Statement	Reason
1. $\overline{MN} \cong \overline{QP}$	1. Given
$2. \overline{MN} \parallel \overline{QP}$	2. Given
3. $\angle MNP \cong \angle QPN$, $\angle NMQ \cong \angle PQM$	3. Alternate Interior $\angle s$ Theorem
$4. \angle MON \cong \angle QOP$	4. Vertical ∠s Theorem
5. <i>O</i> is the midpoint of \overline{MQ} and \overline{PN}	5. Given
6. $\overline{MO} \cong \overline{QO}$, $\overline{PO} \cong \overline{NO}$	6. Definition of midpoint
7. △ $MNO \cong △QPO$	7. Definition of $\cong \triangle s$