Synthetic Substitution Practice Solutions

$f(x)=x^{3}-7 x^{2}+7 x+15 \quad f(2)=9$ so this graph contains the point $(2,9)$
$21-7 \quad 7 \quad 15$

$$
-\frac{2}{-5} \frac{-10}{-3} \frac{-6}{9}
$$

$\uparrow_{\text {remember that this }}$ result is just the y-coordinate

$$
\begin{array}{lc}
\begin{array}{l}
\text { Factor using Synthetic Division } \\
f(x)=x^{3}-7 x^{2}+7 x+15
\end{array} & -1) 1-7 \quad 7 \\
& \downarrow \frac{-1}{-8} \frac{8}{15} \\
& \frac{-15}{0} \\
& (x+1)\left(x^{2}-8 x+15\right) \\
& (x+1)(x-3)(x-5) \\
& x \text {-intercepts at } \\
& (-1,0)(3,0) \text { and }(5,0)
\end{array}
$$

Factor using Synthetic Division

$$
\begin{array}{ccccc}
f(x)=2 x^{3}-11 x^{2}+2 x+15 & -1 & 2 & 11 & 2 \\
& 15 \\
& \frac{-2}{2} & \frac{-2}{-13} & \frac{13}{15} & \frac{-15}{0} \\
(x+1)\left(2 x^{2}-13 x+15\right) \\
(x+1)(2 x-3)(x-5)
\end{array}
$$

x-intercepts at

$$
(-1,0)\left(\frac{3}{2}, 0\right)(5,0)
$$

Factor using Synthetic Division

$$
\begin{aligned}
& \left.f(x)=x^{3}-3 x-2 \quad 2\right\rfloor \quad 1 \quad 0 \quad-3 \quad-2 \\
& -\frac{2}{2} \frac{4}{1} \frac{2}{0} \\
& (x-2)\left(x^{2}+2 x+1\right) \\
& (x-2)(x+1)^{2} \Rightarrow x \text {-intercepts at }(-1,0) \\
& \text { and }(2,0)
\end{aligned}
$$

$$
f(x)=x^{3}-2 x^{2}+5
$$

Show that there is an x-intercept between
-2

$$
x=-2 \text { and } x=-1
$$

2) $1 \quad-2 \quad 0 \quad 5$
-1
$-\frac{-2}{-4} \frac{8}{8} \frac{-16}{-11}$

$$
-\frac{-1}{-3} \frac{3}{3} \frac{-3}{2}
$$

$(-2,-11)$

between

$$
\begin{aligned}
& \text { between } \\
& x=-2 \text { and } x=-1
\end{aligned}
$$

the graph has to cross 0
to got from $y=-11$ to $y=2$

