7-5: L’ Hôpital's Rule

Guillaume De I'Hôpital 1661-1704

Johann Bernoulli 1667-1748

$$
\begin{gathered}
\text { L'Hôpital's Rule: } \\
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \\
\text { If } \lim _{x \rightarrow a} \frac{f(x)}{g(x)} \text { is indeterminate, then: } \\
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{0}{0}=\lim _{x \rightarrow 2} \frac{\frac{d}{d x}\left(x^{2}-4\right)}{\frac{d}{d x}(x-2)}=\lim _{x \rightarrow 2} \frac{2 x}{1}=4
\end{gathered}
$$

On the other hand, you can apply L' Hôpital's rule as many times as necessary as long as the fraction is still indeterminate:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-\frac{x}{2}}{x^{2}} \longleftarrow \frac{0}{0}=\frac{-\frac{1}{4}}{2} \\
& \lim _{x \rightarrow 0} \frac{(1+x)^{\frac{1}{2}}-1-\frac{1}{2} x}{x^{2}} \begin{array}{l}
\begin{array}{l}
\text { (Rewritten in } \\
\text { exponential } \\
\text { form.) }
\end{array} \\
=\lim _{x \rightarrow 0} \frac{\frac{1}{2}(1+x)^{-\frac{1}{2}}-\frac{1}{2}}{2 x} \longleftarrow \frac{0}{0} \\
=\lim _{x \rightarrow 0} \frac{-\frac{1}{4}(1+x)^{-\frac{3}{2}}}{2} \longleftarrow \text { not } \frac{0}{0}
\end{array}
\end{aligned}
$$

Example:

$\lim _{x \rightarrow \infty} \frac{e^{x}-1}{2 x}=\frac{\infty}{\infty}$
Wait, what's this?

L'Hôpital's rule can be used to evaluate other indeterminate forms besides $\frac{0}{0}$.

The following are also considered indeterminate:

The others must be changed to fractions first.

Example:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}-1}{2 x}=\frac{\infty}{\infty} \underbrace{\text { ind }}_{\begin{array}{c}
\text { First make sure it's } \\
\text { indeterminate }
\end{array}}
$$

Now we use L'Hopital's Rule

$$
=\lim _{x \rightarrow \infty} \frac{e^{x}}{2} \quad \longrightarrow \frac{\infty}{2}=\infty
$$

Example:

$\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}-1}=\frac{\infty}{\infty}$
First make sure it's
indeterminate
Now we use L'Hopital's Rule

$$
=\lim _{x \rightarrow \infty} \frac{2}{e^{x}} \quad \longrightarrow \frac{2}{\infty}=0
$$

$\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right) \longleftarrow$ This is indeterminate form $\infty-\infty$
If we find a common denominator and subtract, we get:
$\lim _{x \rightarrow 1}\left(\frac{x-1-\ln x}{(x-1) \ln x}\right) \longleftarrow$ Now it is in the form $\frac{0}{0}$
$\lim _{x \rightarrow 1}\left(\frac{1-\frac{1}{x}}{\frac{x-1}{x}+\ln x}\right) \longleftarrow$ L' Hôpital's s rule applied once.
$\lim _{x \rightarrow 1}\left(\frac{x-1}{x-1+x \ln x}\right) \longleftarrow$ Fractions cleared. Still $\frac{0}{0}$
$\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$
$\lim _{x \rightarrow 1}\left(\frac{1}{1+1+\ln x}\right) \longleftarrow$ L'Hôpital again.

End Behavior involves limits as x goes to infinity. Since we are dealing with indeterminate forms again, L'Hopital's Rule can help us.
Let's take a closer look at example 3 on page 403
EX 3 Find the end behavior of $y=x e^{x}$.
a) Left EB: $\lim _{x \rightarrow-\infty} x e^{x}=-\infty \cdot e^{-\infty}=\frac{-\infty}{e^{\infty}}=-\frac{\infty}{\infty}$

So let's rewrite this as a fraction:

$$
\lim _{x \rightarrow-\infty} \frac{x}{e^{-x}}=\lim _{x \rightarrow-\infty}=\frac{1}{-e^{-x}}=\frac{1}{-e^{-(-\infty)}}=\frac{1}{-e^{\infty}}=\frac{1}{-\infty}=0
$$

Apply	"Plug in"	Simplify
L'Hopital's		
Rule	infinity	

b) Right EB: $\lim _{x \rightarrow+\infty} x e^{x}=\infty \cdot e^{\infty}=\infty$, so the right side goes up

Graph this on your calculator to see for yourself

So the end behavior is that the left side approaches $y=0$ and the right side goes up.

