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Unit A:;

Analytic Trigonometry



Section A1—RADIANS

LEARNING OUTCOMES
Express angles in radian measure
Convert radian measure to degrees

Until now, degrees have been used to measure angles. In this section, another way to measure angles will be
explored—radians.

In this diagram, the radius of the circle is indicated by r, the
central angle by & (the Greek letter theta), and the arc length s
by s, as shown.

When the central angle of a circle intercepts an arc that is the
same length as the radius of the circle (» = s, in the circle
shown), the measure of this angle ( &, in the circle shown) is
defined to be one radian.

- Vocabulary:
" Radian —in a circle, the measure of a central angle for which the intercepted arc length equals the radius of the
circle

Radians are used in almost all mathematical applications (including future high school and university-level
courses) and in many computer languages; using radians will often make the work easier.

Here are some basic facts about radian measure:

A full circle is made up of 27 radians (3607).
A semicircle is made up of z radians (180°).

A right angle is made up of % radians (90°).

1° = 7z radians
180

| radian = [@)" This is approximately 57.3".
T

REMEMBER:
To denote radian measure, just write the number of radians—with no symbol. For example, to write 2 radians,
just write it as 2. Be careful. If an angle measure is written with no degree symbol, it will be interpreted as

radians.

The calculator has a radian mode. Be sure to know how to put your calculator in this mode.




CONVERSIONS:

Use the following formula in all conversions, plugging in all known information, then solving the proportion for
whatever is unknown. Use a variable for either “radians” or for “degrees,” depending on what is unknown.

7T radians

180 degrees

Example 1
Convert each angle expressed in degrees to radians.
a. 120° b. -245°
n r z .
Ten 190 180 —245
180 120
1207 = 1807 —245r = 180r
1207 . o= b7
_ o . 22
P 3 36
o . Vrx
120° = 2% ~245° = T
3
Example 2
Convert each angle expressed in radians to degrees.
a Z b, 3%
3 4
T i; . —3’4—
180 g 180 —d
T = wd 1 371'\ = d
ISO(—J 80} ——~
J
180 _ 180[—3) = d
3 4
60 = -135 = d
Z - 600 BECANY T
4




Example 3
Use a calculator to evaluate.

a. sinl b. sin 1’
With the calculator in radian mode, find the With the calculator in degree mode, find the
sine of 1. The display on the calculator sine of 1. The display on the calculator
should read about 0.84147. should read about 0.01745.

Section Al Exercises

Do on binder paper. Show steps.

Convert each of the following angles to radian measure. Simplify; express answers in terms of .

1. 30° 2. 15° 3. 100° 4. 200°
5. 75 6. 105° 7. 120° 8. 240°
9. -320° 10. -250° 11.-85° 12.-175°

Convert each of the following angles to degree measure.
13.1 14.2 15. 87 16. =127

17. 7% 13, 1%
4

19. Find the length of an arc of a circle with a 10cm radius associated with a central angle of ZT”

20. Find the length of an arc of a circle with a 5 foot radius associated with a central angle of 2.1.



Section A2—ANGLES IN TRIGONOMETRY

LEARNING OUTCOMES:
Measure angles as rotations
Determine reference angles

In Geomeftry, an angle is defined as two rays with a common

endpoint. In trigonometry, however, an angle is a rotation from Terminal
one ray to another. The rotation begins at the initial ray and ends ray
at the terminal ray. Note the presence of arrowheads to indicate Rotation

v

both the rays and the rotation.
Initial ray

Typically, the initial ray of an angie will be the positive x—axis A
(unless stated otherwise). Such an angle is said to be in standard

position. To sketch an angle in standard position, show only the

terminal ray and the rotation. 0 )

The angle shown here as & measures 210° and is in standard
position. (Greek letters are commonly used for angles, The letter

g is called theta.) v

- Vocabulary:

- Angle: arotation from one ray to another

* Initial Ray/Initial Side: the ray at which a rotation begins

. Terminal Ray/Terminal Side: the ray at which a rotation ends

~ Standard Position: an angle positioned such that its initial ray is on the positive x—axis

.. Coterminal Angles: angles in standard position with the same terminal ray. It is possible to find many

- coterminal angles if multiples of 360° (or 2x) are added to or subtracted from an angle’s measure.

" Reference Angle: the positive acute angle between the terminal ray of an angle and the x—axis, sometimes

" noted as g, .

If angles are rotations, angles measuring greater than 180" may exist. Negative angles may exist,
Counterclockwise rotations represent positive angles and clockwise rotations represent negative angles. A
reference angle is the positive acute angle between the terminal ray and the nearest x—axis. The two angles

shown are in standard position; each has a reference angle of . Note the arrowheads indicating direction.

A A

A
=
v
A
v




Example 1
The diagram shows a 30° angle. Name two other coterminal angles. 4

Solutien:
30

A
Y

One can arrive at the same terminal ray by rotating in the opposite
direction. The angle whose measure is —330° has the same terminal ray.
Another way is to go around more than once. One revolution is 360°, so the
angle measuring (30 + 360 + 360)°, or 750°, also has the same terminal ray. v
Thus, 30°, ~330°, and 750° are all coterminal angles. There are an infinite

number of coterminal angles, as 360" may be added or subtracted any

number of times.

Example 2
Determine the reference angle.

Solution:

A
v

The reference angle is 180° — 135°, or 45°.

Example 3
Determine the reference angle for an angle measuring —125°.
Solution:
< 5 >

The reference angle is —125° — (—180°), or 55°. Note that reference angles &/ 125°
are always positive, even when the angle measure is negative. -
Section A2 Exercises
Draw the angle (show the rotation).

1. 34° 2. 230° 3. —120°

4. -175° 5. 60° 6. —400°

7. —955° 8. 855° 9. 160°

10 -7 11. 87 12, 137

6 4

State the reference angle for each of the following angles of rotation. Note: if an angle is expressed in radians,
express m,,, inradians.

13. 405° 14. 260° 15. 600"
6. -2Z 17. 2% 18, 2%
6 3 4



Section A3—INTRODUCTION TO ANALYTIC
TRIGONOMETRY

Vocabulary:
Analytic Trigonometry — the study of the properties and relations of the trigonometric functions in the

coordinate plane; an extension of right triangle trigonometry
Unit Circle — a circle centered at the origin whose radius is one.

LEARNING OUTCOMES:
Determine trigonometric ratios for special angles in standard position
Determine the coordinates on the unit circle for terminal rays of selected rotations
Find exact values of trigonometric expressions without a calculator

As defined in a previous section, the reference angle connects geometric trigonometry with new definitions in
analytic trigonometry. With this diagram,

the Pythagorean Theorem becomes

and SOHCAHTOA becomes

Expand on that to define three reciprocal trigonometry functions, so named because they are the reciprocals of
the first three:




Exact trigonometric values can be found for several specific angles. Recall the ratios of the sides in the special

triangles—1:1: \/E in the 45°—45°-90° triangle and 1; J3: 2 in the 30°-60°-90° triangle. From this,
coordinates for many angles in the unit circle can be determined in the unit circle. Each of the highlighted
points in the four quadrants of the unit circle represent angles that have reference angles measuring either 30°,
45°, or 60°, Recall that the radius of the unit circle is 1. Analyze this diagram, which illustrates a 30° rotation:

g | = P

Analysis shows that the coordinates of the point at which the terminal ray of a 30° angle intersects the unit

. 31
circle are | =, — | .
22

10



Example 1:  Find the coordinates on the unit circle for a 135° rotation

Solution:

Sketch a 135° rotation; note that the terminal ray is in Quadrant II and mg, . =45°.

Use the 1:1 :\/5 side ratio to find the lengths of the horizontal and vertical sides of the
45°—45°—-90° triangle in the unit circle. Recall that the radius is 1.

- —

The side lengths are all shown as positive, but in QII, the x—coordinate is negative, so the
coordinates of the point at which the terminal ray of a 135° angle intersects the unit circle are

%)

Continuing this process, coordinates for ALL the marked points on the unit circle can be found.

11



Further, exact values of trigonometric expressions may be found using the values from the unit circle in
conjunction with the analytic definitions of each of the trigonometric ratios.

Example 2:  Find the exact values of each of the following. Simplify completely.

(a) sin300°sec300°

=2 L (recall that » = 1)
roox
_B
2
;—-\/5
(b) sin’ 7 tcos? ™ *#¥ Note that sin® 8 =(sin 6’)2

il I
TN T
! ~ =
b | ~—
L]
N
~ | =
—3 e
"~

Bl e

. T i s n
(¢) sin—sec— +cot—cos—
4 4 6 3

()5 2)3)

[ =

12



UNIT CIRCLE

NAME

Date

AMD.G.

13

Period



UNIT CIRCLLE—TABLE

NAME

Date

AMD.G.

Period

Radians (x)

Degrees (6 )

Cos X

S X

tan x

OO

30°

45°

60°

90°

120°

135°

150°

180°

210°

225°

240°

270°

300°

315°

330°

360°

Note that x in this context represents an angle, as x radians.

14



Section A3 Exercises

1. Fill in the Unit Circle in this section with (x, y) coordinates for all marked rotations.
2. Fill in the Unit Circle Table in this section.
Simplify each of the following trigonometric expressions completely without using a calculator.
3, sin® 60°—cos’ 60°
4. sin30°cos60° +sin 60° cos 30°
5. tan®150°—cot’ 210°
6. sec’ 240°—tan’120°

7. sin? Z 4 cos? 2z
3 3

3 T T
8. csc—tan—cos—
4 4

T 1z T
9. cot—sec——+csc—
6 6 6

1 I

s S 3 5w
csc—+cot—  csc— —cot—-
4 4 4 4

10.

15



Section Ad—EXACT VALUES AND
CALCULATOR USE

LEARNING OUTCOMES
Find all six exact trigonometric ratios for an angle given a coordinate point on its terminal ray
Use a calculator to find approximate trig values for a given angle
Use a calculator to find all approximate angle measures for a given trig value

Previous sections have explored exact values in a unit circle. Not every circle, however, is a unit circle. How
can exact values be found in a circle that is not a unit circle if a point of intersection on the circle is given?

Example 1: Find the six exact trig values of @ if (1, —2) is on the terminal side. In the diagram, the triangle is
there for reference only, and @ represents the reference angle; the rotation for & is not shown because there
are an infinite number of coterminal angles.

———+ e: =
e o y=2
2+(=2) =72
r=+/5
Solutions: sina = ——2 cos @ = —] tana = -2
' J5 NG
csc o = —g seca = 5 cot @ = —%

Note that the fractions for sine and cosine are not rationalized. While some teachers—as well as the SATs—
may require it, it is not emphasized here. That was done in previous classes to practice simplifying radicals.

In problems where one trig function is known, information about the quadrant is needed to tell if x and y are
positive or negative, because the solution to the Pythagorean Theorem could be either (due to the need to find
the square root of a number to solve for x or y). This is never a problem with r, because r is the length of the
radius ray and must therefore be positive. This will be a key issue later when inverse trig operations are
explored.

16




Example 2:  Find the other five exact trig values of £ if sin # = % in Quad II.

450 = 13°
X =144
x=%12

in Quadrant II, x is negative, sox =12, y =5, and r=13.

. 12 5
Solutions: cos B=— — tan 8 =——
g 13 b 12

13 13 12

csc o= — sec ffi =—— cotffl = ——

g 5 p 12 p 5

Example 3:  Find the other five exact trig values of & if cot & z-f:- in Quad ITI.

cot § == , but both x and y are negative in Q III, so
¥y

2
41

A

(~4) +(-5)

2
I3
7

5 4
Solutions: sind =——== Cos = ——— tan & ==
41 A4l
V41 V41
cscé‘m—-——g—— sec & :—T

Calculator Use

Much of trigonometry will require the use of a calculator, since only certain exact values (those from the unit
circle) are known. There are a few things to keep in mind with calculator problems.

REMEMBER:

1. The mode the calculator is in makes a huge difference. The user must “tell” the calculator if the angles
entered are degrees or radians. Sin 3° is very different from Sin 3.

2. Calculators only have three trig keys (sin, cos, and tan), not six. The other three (csc, sec, and cot) are
reciprocals of the first three.

3. Knowing a trig value alone is not sufficient to tell us the angle. Knowing one trig value only narrows
the answers down to the reference angle in two possible quadrants.

17



Example 4: Find the six approximate trig values of 165°. Round all values to the nearest thousandth.

Solution: sin 165° =.259
‘ cos 165° =—966
tan 165° =-268
csc 165° = — !
sim |
sec 165° =—~1——-~—=-1.035

cos 165°

1

tan 165°

=3.864

50

cot 165° = =-3.732

Finding Angles

When finding angles by calculator, remember that when a positive sine value is entered, the calculator does not
“know” whether an angle in QI or QII (the two quadrants in which sine is positive) is needed. When a positive
cosine value is entered, the calculator does not “know” if the angle is in QI or QIV. When a positive tangent
value is entered, the calculator does not “know™ if the angle is in QI or QIII. There are two answers to each
inverse problem, but the calculator can only give one of them. In addition, there are an infinite number of
coterminal angles that could represent the angles needed. The following is a way to BOTH get the alternate
quadrant’s answers AND list all the coterminal angles. What follows are the trig—inverse rules when angles are
expressed in degrees:

.1 X _ | calculator £360°n
—calculator £ 360°n

.y calculator = 360°n
sin” ==
180° — calculator +£360°n

Ly { calculator +360°n

tan” — =
180°+ calculator +360°n

} = calculator +180°n
X

The answers represent sets of angles, so use braces to indicate the sets.

The symbols cos™ X, sin” x and tan™ x will be used almost exclusively in this course. But, with circular
functions, inverse is often replaced by “arc”—as inarccos x, arcsin x and arctan x .

sin”' ¢ = arcsin ¢ csc” A =arcesc A
cos™' @ = arccos 8 sec” B =arcsec ff
tan™ x = arctan x cot™ u=arccot u

18



Example 5: Find the following approximate angle values in degrees.
(a) Find « if sin & =.351
According to the calculator, sin™' {.351)=20.548°. The rule for sin™ tells us the second possible value
for o 1is 180°—20.548°=159.452° . Considering all coterminal angles as well,

_ [20.548° £ 360°n
"~ 1159.452° + 360°K

(b) Find S if tan f=1.4

According to the calculator, tan™ (1.4)=54.462°. The rule for tan” tells us the values of § are
separated by 180°. Considering all coterminal angles as well,

360°x

360%

+ H

) i 54.462°
p= {54.462° + 180°n} This can also be written as f =
234.462

(c) Find & ifsec § =—1.6

sec 6 =-1.6 isreally cos™ (%6} . According to the calculator, cos™ (M-ngm128.682°. The rule

for cos™ tells us the second possible value for o is —128.682°. Considering all coterminal angles as
well,

128.682°+360°
= " This can also be written as § = {i128.682° i360°n}
—128.682 +360%

(d) Find ¢ if csc @ = 0.654

csc @ = 0.654 is really sin™ (6—61;1] . The calculator yields an error message for this value, so
csc @ = (.654 DNE (Does Not Exist)

The sec” or csc” of a number whose absolute value is less than 1 does not exist (DNE), because sec and csc

are defined with the hypotenuse (the longest side) as the numerator. Similarly, the sin” or cos” of a number
whose absolute value is more than 1 also does not exist (DNE). Note that the angles were not found by
dividing: the trigonometric inverse functions were used. While —1 as an exponent does mean reciprocal in

other cases, it does not mean that here. The -1 represents the inverse operation, the operation that undoes the
original. Trig—inverse is about finding angles. So, remember:

sin”! @ % cscd cost O=secd tan”' @ cot 6

19



What follows are the trig—inverse rules when angles are expressed in radians:

Co§  —=

X { calcuiatori?.:rn}
r

—calculator + 271

sin™ ¥ =

{ calculator + 27n }
r

7 — calculator + 27n

fan 2=

na { calculator + 27n
X

= calculator £ 7n
7z + caleulator = 27n

Example 6:  Find the following approximate angle values in radians.

(a) Find @ if cos @ =.422

According to the calculator, cos™ (.422)=1.135. The rule for cos™ tells us the second possible value
for & 1s—1.135. Considering all coterminal angles as well,

1.135 + 2zn
o =
~1.135 + 2an
(b} Find & if csc & =—0.3

csc & =-0.3 isreally sin™ (—wégJ . The calculator yields an error message for this value, so

csc 0 =-0.3 DNE

(c) Find ¢ if cot @ = 1.7

cot @ = 1.7 isreally tan™ (%) According to the calculator, tan™ (%]=0.S32. Considering all

coterminal angles as well,

@ ={0.532 + 71'1‘1}

20




Section A4 Exercises

Find the six exact trig values if the given point is on the terminal side of & .

1. (6,8)

2. (-1,-4)
3. (2,-3)
4. (-5,5)

Find the other five exact trig values for the given value.

5. sinA= % in Quad I 6. cosC= —g in Quad TIT
25. 6.
7. tanB = >4 in Quad III 8. cscg= wgm Quad IV
37 10 11.
- ; . cot @=——1n Quad II
9. secp = 3 in Quad II 60 Q

Approximate the following trig values to 3 decimal places.

11. sin 14° 12. cos 5
13. tan 140° 14. cot 14
15. sec—6 16. csc—195°

Approximate the following angle values to 3 decimal places in degrees.

17. sin™ .652 18. arccos —.521
19. tan™ 1.432 20. arccot —.652
21. sec” 1.781 22. csc! 395

Approximate the following angle values to 3 decimal places in radians.

23. sin™' 1.633 24. arccos —.101
25. tan~ 4.388 26. arccot —.205
27. sec” 2.641 28. cse”’ 1.171

21



Section AS—TRIGONOMETRIC IDENTITIES
(Reciprocal, Quotient, and Pythagorean)

Recall:

Based on these definitions, we can create some simple identities.

The Reciprocal Identities

cscl = _l sec G = ! coté’:——-l———
sin & cos & tan &

The Quotient Identities

tan @ = sin 0 cotf = C‘_JSQ
cos & sin @
tan & = sec 0 cotf = cscd
csc @ secd

The Pythagorean Identities

sin? @ +cos” B =1 tan? @ +1=sec’ & 1+cot? @ = csc’ @

The Pythagorean identities have alternative versions that we are likely to see as well:

sin?@ + cos’H =1 tan’d + 1 = sec’ @ 1 + cot’d = csc’d
1 — cos’@d = sin’@ sec’d — 1 = tan’ @ csci@ — 1 = cot’d
1 — sin’f = cos’ @ sec’@ — tan’@ = 1 csc’@ — cot’@ = 1

22



The alternative forms are useful, as they can be factored as “difference of squares” binomials. For example,

1 — sin’f = (1 + sinf)(1 ~ sinf)

LEARNING OUTCOMES
Transform basic trig expressions.
Prove basic trig identities.

The proofs of the identities we will be working with are algebraic in nature. Meaning, we will show that the use
of multiplication, addition and common denominators will cause one side of the equation to simplify to the
other. Or, similar to what we did with proofs in Geometry, both sides simplify to the same thing.

Example 1: Prove cscx tanx cosx =1

f
ot

cscxfanx cosx

1 sin x
[ ]

SinNXx Ccosx

®CO8 X - 1

1 = 1

Notice that the answer is the process, not the final line, We knew what the final line would be,
because it was given.

Example 2:  Prove cot § sec f+csc ff=2csc ff

This one can be done quickly if we seecot f = csc f . This leads to
sec
cot fsec ftesc f = 2cscff
csc

sec f+csc
sec /3 esec f £ - 2csc B
csc ftese B = 2cescf
2csc f = 2cscf

Like proofs in Geometry, there are typically different approaches to trigonometric identity proofs. The answer

1s the process, not the result. In the previous example, one might not see that cot 8 = cs¢ g . Another,
sec

longer way would be to turn the whole problem into sin # and cos f , as follows:

23




Example 2 (again, a different way): Prove cot S sec f+csc ff=2¢csc

Example 3:

cot fsec ftesc f = 2cscf
1 1
C?S P +— = 2cscf
sin f cos 8 sinf
1 ]
+ = 2
sin §  sin B cscp
2
= 2c¢sc
sin 8 p
2cscff = Z2cscff
|
Prove + =2csc A
cscA+cot A cscA-—-cot A
1 N I
csc Atcot A csc A—-cot A
1 [cscA—cotAJ_l_(cscAﬂotAJ 1
¢sc At+cot A\ esc A—cot A cs¢c Atcot A Jesc A—cot A

csc A —cot Atcsc A+cot A

(csc A-cot A)(csc A—cotA)

2ese A

csc? A —cot? A

2csc A
1

2csc A

% Notice the Pythagorean identity in line 4 of the proof!

24
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2csc A

2csc A

2csc A

2csc A



Techniques for Approaching Trigonometric Identity Proofs:

. Verify that you wrote the original problem correctly before you begin.
Decide which side of the equation is “uglier;” that’s usually the best place to start; this could be either
the right or the left side of the equation.

. Work vertically; keep the = signs lined up.
Show every step; don’t assume the reader can follow your “mental leaps.”

. Use identities to reduce the problem to two or fewer trig functions. These might be sine and cosine, but

be aware of how secant and tangent or cosecant and cotangent work together.
Squares indicate possible Pythagorean identities.
Do Algebra; remember to simplify.
a) Common Denominators
b) Combine “like terms”
¢) Distribute and/or FOIL
d) Factor
Finish the proof by verifying that both sides of the equation /ook identical.

Notice that in Example 3, a Pythagorean identity emerged in the middle of the proof. Some examples, however,
will show Pythagorean identities earlier in the proof, perhaps at the very beginning. Some of these problems
will involve factoring. One of the techniques under the “Do Algebra” heading is factor.

LEARNING OUTCOME
Prove trigonometric identities that involve factoring.

Example 4: Prove sin? x+cot® xsin® x =1

sin® x+cot’ xsin*x=1 = 1
sin’ x(1+ cot? x) =1

- 2 9
Sm- X(CSC-' X = 1

sinzx[_l, } = |
sin? x

1 =1
Example 5:  Prove cot* w—csct w=1-2csc? w
cot* w—esctw = 1-2csc’w
(cot2 w—csc’ w)(cot2 w—csc” w) = 1-2csc?w
(-~1)(cot2 w+ csc w) = 1o0scc W
—(csc2 w—1+csc’ w) = 1-2csccw
I-2cs¢?w = 1-2csc’w

25




Example 6:

Example 7:

cos’ 5 +2cosS +1 _cosd+1
Prove .05 § —3cosé—4 cosd —4

cos’ 5 +2cos S +1 cosd +1
cos’ 6 —3cosd —4 coso —4
(COS5+1)(COS5~§*1) coso +1
(cos& —4)(cosd +1) cosé —4
cosd +1 cosd +1
cosd —4 cosd—4
3sec’ 0 —8tanf+1 3tanf -2
Prove gec?2g_tang-3  tanf+1
3sec’ 9 —8tan & +1 3tand -2
sec’ @ —tand -3 tané +1
3(tan® @ +1)—8tan 6 +1 3tand 2
(tan29+1)~tan9—3 Ttan6+1
3tan’ @ —8tan & +4 3tanf ~2
tan” 6 —tan & —2 tan & +1
(3tan9-~2)(tan9—2) Itanf — 2
(tan@ +1)(tan @ —2) Ttanf+1
3tanf -2 3tan@ -2
tan & +1 tan 6 +1

26



Section A5 Exercises

Prove the following identities.
1. cos” x+tan” x cos” x=1

5 2c0s @ = cos ftan @ +sin &
tan &

3. 1+42tan® f=sec’ f—tan' g
4. 4+(tan o—cot 0')2 =sec’ g+esc’ o

(cos 8)(cos ) —(—sin &)(sin )

5. > =sec’ 6
cos” O
6. (sin x}(-sin x') ;(cos x)(cosx) et x
sin® x
7. —(_SI—I;{Q)zsec @tan 0
cos
8. - ctoi P - csc @ cot @
sin® @
N (cosa+sina)({cosa+sina)—1 —sina

2cos a

10. tan' W (cot W cos W +sin W) =sec W

1 sec f§ sin 8

=cot
sin 5 cos p
12 sin A _{_1—(3()5,%:208(;/1
" 1-cos A sin A
13 Coszg_cotécscﬁtané’——sinﬁ
' csc @
14. tanb~{~ccntb=cSCb
cosb

cos X

15. =cotx csc x+cot’ x

l—cosx



16.

17.

18.

19.

20.

cot 0+1  l+tan’ @

cot @  —tan @+sec’ @

sin® B—sin B+1 _ 1+sin’ B

1-sin B 1-sin’ B

cot’ a—4desca~11 _ csca—6

1+sin

cot’ @ -3 —csc a—2

b = 2sec’ g1+ 2sec y tan g1
1—sin u

csc® S—cot® §=1+3csc® §cot® &

28



Section A6—VECTORS

LEARNING OUTCOMES:
Translate a vector from polar to rectangular form and vice—versa.
Add vectors.

Vocabulary:

- Vector: a directed line segment. Vector notation typically consists of a letter name for the vector with a partial
~ arrow symbol over the name, as a.

- Magnitude: the length of a vector

- Direction: the angle of orientation of a vector expressed in standard position

- Polar Form: avector expressed as a magnitude (length) and a direction (angle)

Rectangular Form: a vector expressed as the sum of its horizontal and vertical component parts

.- Resultant Vector: the sum of two or more vectors

Consider the following:

The vector at right, named a, has magnitude 3 and direction 143", ., 4
This means that the vector is 3 units long, and its rotation is 143° from l
the origin. The vector is described as having a “head” and a “tail,” as The “head” of the vector=" " :
shown. Any vector can be described by its magnitude and direction. i
However, it is often useful to describe a vector in terms of its D ro
horizontal and vertical components; the horizontal component The “tail” of the veotor” ¥

(indicated by an i } runs in the x direction, and the vertical component
(indicated by a ;) runs in the y direction.

If we look at a, and remember the definitions of sine and cosine,

4
;
cosl43°== sinl43e=2 KT ‘
3 3
x=3cos143° y=3sin143°
<+ L~
x=-2.3959... y=1.8054... :

v
The horizontal and vertical component vectors are shown. The result of adding these two component vectors is

our original vector a. The horizontal and vertical parts are typically expressed as xi and v , as follows (note

that the x and y values effectively become coefficients of the i and 7 vectors):
a=-2.396; +1.805

When two vectors are added, each is typically expressed as the sum of its components and like terms (all the i
terms and all the ; terms) are added. The sum vector is typically called the resultant vector and labeled r.
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Example 1: If ¢ hasa magnitude of 5 and direction 70°, and b hasa magnitude of 6 and direction 25°, find
the resultant vector, 7, as the sum of two components.

Solution:

= 5c0s70% + 5sin 70°/

a
b = 6¢cos25% + 65in 25°;

Note that both i vectors are horizontal, and both ; vectors are vertical. Therefore, the i terms

are like terms, as are the } terms. By combining like terms,

(a+b)=r=7.148i+7.234;

It is sometimes either necessary or desirable to express a resultant vector not as a sum of its vertical and
horizontal components, but as a magnitude (length) and direction (angle measured either in degrees or radians).

The magnitude is determined using the horizontal (E ) and vertical ( j ) coefficients and the Pythagorean

Theorem. The direction is found using inverse trigonometry; typically cos™ is used.

Example 2:  Express your answer to the example 1 (above) as a magnitude and direction.

Solution:

2 2 2
X +y =r

(7.148)" +(7.234)" =»*

r=(7.148) +(7.234)’

r=10.170 This represents the magnitude of the resultant vector r

6 = cos™ (é] . Use stored valﬁes.

6 =+45.344°

Decide whether the angle should be positive or negative based on the quadrant of the resultant
(look at the signs of the x and y values above). This angle is in the 1% quadrant, so the angle is
positive.

Therefore, the magnitude and direction are: 10.170 units at 45.344°
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A common application of vectors is velocity, in which the speed expresses the magnitude and the bearing
represents the direction of the vector.

Example 3:

A plane flies at 200 mph along a bearing of 320°. The air is moving with a wind speed of 60
mph along a bearing of 190°. Find the plane’s resultant velocity (speed and bearing) by adding
these two velocity vectors.

Solution:

The speed represents the magnitude of each vector, and the bearing represents the direction.
Solve by adding the horizontal and vertical component vectors. Then use the Pythagorean

Theorem and cos™' to translate the answer to speed (magnitude) and bearing (direction):

200cos320% +200sin 320°

g 7 =94.120i-138.976)
60¢0s190% +60sin190°/

Speed = /1% +J* = 167.848 mph (note that this is the length of resultant vector 1—*)

Direction = cos™ (éj ~ +55.893°

The i and J coefficients above tell us that the resultant vector’s angle is in QIV, so the plane’s

resultant velocity is 167.848 mph at —55.893°. Note that 167.848 mph at 304.107° is also an
acceptable answer, because —55.893° and 304.107° are coterminal angles.

Section A6 Exercises

For problems 1—4:

e Partl: Add @ to b and find the resultant vector, f—', as the sum of horizontal and vertical components.
Round to the nearest thousandth.
e Part II: Express your answer as a magnitude and direction. Use stored values.

1. a=21 units at @ =70° 2. a=12 units at 6 =160°
b =40 units at & =120° b=8 units at & =310°

3. @=15.7 units at 8 =113° 4. a=9.6 units at §=199°
b=8542 units at §=21° h=18 units at & =12°

5. A plane flies at 450 mph on a bearing of 215°. The wind speed is 70 mph, and is blowing on a bearing
of 80°. Find the plane’s resultant velocity.

6. A cruise ship sails at 24 knots (knots = nautical miles per hour) on a bearing of 180°. The current is
flowing at 4 knots on a bearing of 135°. Find the cruise ship’s resultant velocity.
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Section A7T—LAW OF COSINES

LEARNING OUTCOME:
Use the Law of Cosines to solve an oblique triangle.

Recall that a vector is a directed line segment with two components: magnitude and direction. The magnitude

of a vector is also known as its length, while the direction of a vector is an indication of the angle of orientation
of the vector if it is in standard position.

In the real world, vectors are typically not in standard position, nor are they typically sketched on a coordinate
plane. Under these conditions, it may be more challenging to add two vectors together. We need a new tool,
called the Law of Cosines. The Law of Cosines may be used to solve any oblique triangle, unlike
SOHCAHTOA, which can only be used for right triangles.

The Law of Cosines: In any A4ABC,

c=a*+b -2abcosC

c
Angles are indicated with capital letters, while the side b
lengths opposite those angles are indicated with matching A
lower case letters. The Law of Cosines can be used to e
solve for either sides or angles. c
B
Example | Example 2
Solve for c. Solve for mZA4.
77 29
93 A
38
c 60
Solution:
Solution:

& =932 + 77 —2(93)(77) cos 130°
¢ =4/93% +77% —2(93)(77) cos130°

38* =29 +60° ~2(29)(60) cos 4

c~154.221 cos 4 <28 —29 —60°
—2(29)(60)
2 2 2
mZA =cos™ 38 ~29 60
~2(29)(60)
m/ A =30.548°
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Guided Practice. Solve as indicated:

Solve for a. Solve for mZB.
! B 18
a
15
16 23
Solve for b. Solve for mZC.
b 39
45 u“
62 77
C

This solution technique may be applied to vectors:

Example 3
Vector @ has a magnitude of 9 and vector b has a magnitude of 5. The angle between the tails of the vectors is

53°. Find the magnitude of the resultant vector r and the angle the tail of » makes with the tail of a.

Solution:

Vectors ¢ and b are oriented tail-to~tail, but in order to add vectors, they must be placed head—to—tail. To
accomplish this, a vector parallel to b will be placed at the head of c—z, as shown. The resultant vector » [also
known as (c—z + E)] will go from the tail of @ to the head of the translated b.

P 4
b <2 53
53 -—% \/
a 73 b
a BRR T
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Use the new diagram (below) and solve for the length of r using the Law of Cosines. Note the location of both

r and 8. -
-

=2 a2 2 o &

¥ =9 +52 —2(9)(5)cos127 - - :
- o = il h=5
F=Af97 +57 —2(9)(5)cos127° ”‘
r ~12.656

The angle that a makes with 7 (when they are considered tail-to—tail) can also be found using the Law of
Cosines. Use the stored value (from your calculator) of 7 in your calculation rather than the rounded value.

57 =97 +12.656" —2(9)(12.656) cos &
57 9% ~12.656
cosf =
—2(9)(12.656)

gecost| 2= ~12.656
~2(9)(12.656)

6 ~18.393°

Section A7 Exercises

In APRQ , PR =60, RO =80, and mZR =47° . Find PQ.

In AWXY , WX =22, XY =41, and mZX =112° . Find WY.

Find the measures of all angles in AABC if AB=6, BC =12, and AC = §.

Solve for the measure of the smallest angle in a triangle whose side lengths are 7, 18, and 22.

malbadi s S

Given vectors @ and b and the angle between the vectors’ tails, find r [AKA (c—z - E) ] and the angle the tail of

r makes with the tail of Ez

= 14, b = 22, angle between the tails of ¢ and b = 119°

Qi

5.

6. a= 10, b= 30, angle between the tails of aand b =122°
7. a =7, b =11, angle between the tails of @ and b = 73"
8. a=19, b =28, angle between the tails of ¢ and b = 12°
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Section AS—LAW OF SINES

The Law of Sines serves as the oblique version of the SOH part of SOHCAHTOA. It relates the angles to the
sides in a triangle. SOH is the specific case of the Law of Sines when the angle = 90°.

Law of Sines: In any A4ABC,
sind _sinB _sinC

a b c
or
a b c

sind sinB sinC

(either form is acceptable; be consistent)

Proof of the Law of Sines, where A4BC is a right triangle whose right angle is ~/B and whose altitude is /.
Therefore, h=asin C. B

6 A

. . ] 1 3 P!
Since the area of a triangle is Area = 5 bh , in this case

Area = %ab sinC

Note that we could have drawn the altitude from A or B, which would have yielded Area = %bc sin 4 and

Area = lac sin B respectively. Since all three must give the same area, then

Dividing by %abc , we get gl SH;B i , which 1s the Law of Sines.
a é
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LEARNING OUTCOME
Use the Law of Sines to find missing sides in an oblique triangle.

The best time to use the Law of Sines is when given information about two angles and a side.

A
Example1: In AABC, a=6, mZB=50 ° and mZC =13 °. Find b and c.

Solution: /\

B” C
Given two angles, we know the third (m.£4 =117°) because the three angles of a triangle add to
180°.
a b ¢
sind sinB sinC
6 b 6 é
: == and . =—
sin117°  sin50° sinl17° sinl3°
b=5.159 c=1.515

Example2: In AMLK,[=8, mZM =42 ° and mZL =100 °. Find m and £.

Solution: M
42°
8  m 8
sin100° sin42°
100°
m=15.436 L K

Because the three angles of a triangle have a sum of 180°,
mZK =38°.

8 k

sin100° sin38°

k=5.001

Example 3:  Find the areas of AdBC and AMLK from Examples 1 and 2.

Solution:

AABC: Area = %ab sinC = %(6)(5 159)sin13° =3.482 square units
AMLK : Area = %(!m)sinK = %(8)(5.436)511138" =13.387 square units
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Section A8 Exercises

Find the missing sides and the areas of these triangles.

I.

2.

In AABC, m£LC =35°, mLA=46° ,and b=7
In ADEF , m£D =35° , mZE =47° ,and /=8
In AMLK , mZK =63° ,m=5and mLL=61°

In APDQ, mZP=114° , m/D=17° ,and g =45
In ABFC, mZB =135°,¢=6and msLC =29°

In ARCQ, mLR=33°, m£Q=57°, and g =11.
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Section A9—AMBIGUOUS TRIANGLES

SSA--The Ambiguous Case

In Geometry, there is no SSA congruence theorem, because there might be two different ways to draw a figure
with two given sides and a given non-included angle. Consider AABC wherea=4, b =15 and mZ4=30°.
Both these pictures fit the criteria. This is an “ambiguous” situation because it can be understood in two
different ways. If solving for ¢, there would be two answers. There are even two ways to solve for c.

B
B

30°

LEARNING OUTCOME
Use a variety of techniques to analyze ambiguous oblique triangles and find all possible solutions.

Example 1: In A4ABC,a=4,b=5and mZA4A=30°. Find c.
Solution:

Use the Law of Cosines; be sure the given angle and side are in the correct positions in the
equation.

@’ +b* —2abcosC =¢’
5 9.8° —2(5)(0)00330":42
¢’ —8.660c+9=0

Use the Quadratic Formula to find c.

_ 8.660:+/8.660° —4(1)(9)
2

C

c="7.453 or 1.208
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Example 1 again: In AABC,a=4,b=>5and ms4=30°. Find c.

Use the Law of Sines to find the other angles. Here, the ambiguity arises from the fact that
there are two angles that have any given sine value: an acute angle and an obtuse angle. The
second angle—which the calculator does not give you directly——is the supplement of the first
angle.

sin B sin30°

5 4
M Q
sinB=23030° _ 4 605
38.682°
ms/B =sin?.625=
141.318°

The two answers for m£B yield two answers for mZC , based on triangle sum.

111.318°
msC =
8.682°

4 c 4 c
sin30° sinl111.318° sin30° sin&.682°
c = 7.453 c=1.208

If that 1s not ambiguous enough, the SSA situation is still more so. There might not be two triangles. There
might only be one—or even none.

Example 2;

In AELP,e=4,]=15 and mZL =34°. Find p.

Solution:
sinE _ sin34°
4 5
sin B =233 _ 6 447
4 26.574°
msE =sin” 447 =
153.426°

If msE =26.574°, then mZP =119.426°. Butif mLE =153.426°, m£P would have to be
negative to get a sum of 180° in the triangle. Therefore,

msP=119.426°

3 )4

sin34° sin119.426°

p=7.788

If the Law of Cosines had been used, one of the sides would have been negative.
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Example3: In ABTW ,b=2,t=5and mZB=63 °. Find w.

Solution:
sin7 _ sin63°
5 2
sinT = 23063° _ 5008

m/T =sin™ 2.228 = error

There 1s no such triangle because side & is too short to reach side w with the given m~ZB.

Section A9 Exercises

Find all possible missing side lengths and angle measures in the given triangles.
1. In AKRL,k=8,r=15and msK =31°
2. In ADEF, mZD=35°,d=11and f=8
3. In AMLK , m£ZK =163°, m=5and k=8
4. In APDQ, m/P=64°,d=17andp=6
5. In ABFC, mZB=35°,c=6and b=5
6. In ARCQ, mZR=30°,r=5andg=10
7. In AJAI,j=9,a=17andi=11

8 In AKRL,k=8,r=15and mAL=76°
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Section A10—MODELING WITH TRIANGLES

LEARNING OUTCOME
Solve mathematical problems involving triangles.

Example 1:  Finding the height of a mountain is not as easy as finding the height of a building because you
cannot directly measure the distance to a spot directly below the peak. Instead, measure the
angle to the peak from two different positions. At point A, the angle of elevation to the peak is
29°. At point B, 400’ further away, the angle of elevation is 24°. How tall is the mountain?

P

24°

29°
B 400" A X

Solution:

AAPX 1is aright triangle. If we knew AX or AP, we could use SOHCAHTOA to find PX (the

height 7). AP is a side in A4BP; since we have two angles in that triangle, we use the Law of
Sines to find AP.

mZLXAP =29°, therefore mZ/BAP =151°.
m#R = 24% o mABEPA =5,

By the Law of Sines,
AP 400
sin151°  sin5°
2 ]

4p = 20081517 5005 027

sin 5°
And

sin 24° = .

2225.0279

h=2225.027sin 24°=905"
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Section A10 Exercises

1. A boat is sailing west toward the Golden Gate Bridge. At one time, the angle measured from due west
to Fort Point is 15°. After sailing 100 feet, the angle is 19°; then the boat continues sailing along its

path. How close will the boat come to Fort Point?

= 100" s
19° 15° oa

Fort Point

2. Triangulation--often used in artillery practice--is a process that determines someone’s (or something’s)
position by taking two sightings from positions that are a known distance apart. If sights that are 200
yards apart determine the target is at 53° and 48°, how far from each sighting position is the target?

3. A parallelogram has sides of 18 and 26, and an angle of 39°. Find the length of the longer diagonal and
the area of the parallelogram.

4. If you participate in any of the marches from Justin Herman Plaza to City Hall, you walk 1.5 miles along
Market street, then a quarter mile on Grove. Grove meets Market at angle of 140°. How far, in a
straight line, is your starting point from the end?

5. A swimmer sees two alligators. He tells you that the distance to one alligator is 30°, the distance
between the alligators is 20’ and the angle where the swimmer is measures 58°.
a. Show that he is wrong about the measure of the angle.
b. Find the two possible distances between the swimmer and the second alligator using the correct
angle, 28°.

6. A surveyor measures three sides of a triangular field and finds them to be 102", 176" and 247'. What is
the area of the field?

7. A trucker on HWY 280 has a CB radio with a range of 5 miles. HWY 280 intersects HWY 85 at a 32°
angle. When the trucker is 6 miles south of the intersection, between what two distances from the
intersection can another trucker on HWY 85 receive the signal?

1500
1000 850

6 1250
1300

HWY 280

Problem 7 Problem 8

8. The surface of the Sunset Reservoir at 24™ and Quintara is a quadrilateral with sides 1500, 1250°, and
1300° and angles 100° and 85°. Find the other sides and angles and the surface area of the Reservoir.
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Unit B:

Selected Topics



Section BI—REVIEW OF LOGARITHMIC AND
EXPONENTIAL EQUATIONS

LEARNING OUTCOME
Simplify and solve equations involving exponential and/or logarithmic functions.

Yocabulary
Logarithmic Function — y =log_x if and only if @’ =x for a >0 and a=1
Common Log —base 10

Natural Log —base e
- e~ an irrational number, whose value is approximately 2.71828...(can you find ¢ on your calculator?)

Any logarithmic equation can be written using either “exponential form,” or “logarithmic form,” based on the
definition of a logarithmic function shown above.

Common Log: Natural Log:
log,, N=Fk orjust logN=k In,N=Fk orjust nN=k
In exponential Form, 10" = N In exponential Form, &' = N

There are three parts to any logarithmic or exponential equation: the base, the exponent, and the argument. In
general,

log, ., argument = exponent

exponent

base = argument

Guided Practice. Complete each of the following exammples.

Example 1:  Write the equation in exponential form.

log ,81=4

Example 2:  Write each in logarithmic form.

(@ 5 =125 (b) 9% =27 © 16“%2%
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There are 3 types of exponential equations. The variable can be either in the base, the exponent or the argument
of the equation, like these:

¥ =125 9 =27 1671 = x

To solve an equation with a log in it, translate the equation to the more useful exponential form before you
solve. Solving the equation may then require the use of a logarithm.

Example 3:  Solve for x algebraically.

(a) log,625=x (b) log

=y

2

cO | ==

1

(c) log, 4= (d) log, x=3/81

3

(&) logy(x+1)=2 (f) log 4=-2
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For more complicated equations or translations, use the rules for logs and exponents (as follows). Note the

similarities.

Example 4:

Example 5:

Example 6:

LAWS OF EXPONENTS LAWS OF LOGS
Products: Products:

a’ea’ =a’"’ log, MN =log M +log, N
Quotients: Quotients:

-C-Imi—ap"" log ym»:log M ~log N
aq - a N a a
Power of a Power: Power of a Power:

(ap)q =g log, M" =nlog, M

Use the Laws of Logs to expand the log.

log

Use the Laws of Logs to express as a single logarithm of a single argument.

(a) %log4 64—4log, 2 (b) 1-3log,x
Solve for x.
(a) 2log,6+log,4=x (b) n(2x+1}-In(x~3)=2In3
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Example 7:  Solve for x.

(a) log, (;vc2 —9)=4 (b) log, (3x+5)+1log, (x—5)=log, 7

() %1ogs(x+6)-log5x=0 (d) Zlogsx—logS(x—2)=2

These problems can also be solved by graphing calculator. Your calculator is programmed in Base 10 or Base e

mode ONLY! We have to use the following rule to change the base to Base 10 or Base e.

Change of Base Rules:
log, x= logox _lnx
08, 4@ Ina
a.t — e\-lna
Example 8  Use your calculator to solve for x
2t & - N
(2) 43 =7 w1057 =1000 (©) 3t =72
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Section B1 Exercises

Simplify these logarithmic expressions to a single log of a single argument.

1. —rl,;ln27+21n2 2. é—(log52+210g4—10g13) 3. %logslé—ZIogle

Expand these expressions to the sum or difference of logarithms.

! 2 2
Py 3 3,733 g
4, log l]W 5. log _J_C___WT»Z_ 6. log X y2
2.3 z N
rz Wz
Solve for x.
7. lo [—I-J—x 8. lo [_l_]mx
It © %% 79
9. log, (x~1)+log, (3x+1)=3 10. log, x +logs (x+5)=2
1. %1087x=10g7 20-2(log, 2 +log, 5) 12. log,, (x* +1)~log,, (x~1)=3
13.17(10%) =51 14, 25 21250
15, 2(3.\'—1] :8(]_x] 16. 7(.\"—1] ZS(HZ)
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Section B2—MODELING WITH LOGARITHMIC
AND EXPONENTIAL FUNCTIONS

LEARNING OUTCOME
Solve real-world problems involving Exponential and Logarithmic operations.

TYPEI: GROWTH & DECAY

Population Doubling Growth y=A (2)%
1\F
Radioactive Half-Life y= A(EJ

y = ending amount, A = initial amount, ¢ = duration of time,
k= half-life or doubling time

Example 1: BACTERIA POPULATION PROBLEM If there are 100 bacteria in a petri dish and the number
of bacteria doubles every 10 minutes, how long will it take for there to be a million bacteria?

Example 2: HALF LIFE PROBLEM Radium has a half-life of 1690 years. How much of a 75 g sample
will be left in 400 years?

TYPE II: FINANCES (COMPOUND INTEREST)

- Vocabulary:

- Simple Interest — interest earned on principal :
- Compound Interest — interest calculated on the initial principal and also on the accumulated interest of previous -
- periods of a deposit ‘
~Annuity — a fixed sum of money saved or paid each period on a continuing basis
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Simple Interest
Interest = Principal + Rate « Time (or/ = PRT)

Example 3: SIMPLE INTEREST How much do you pay if you borrow $100 for six months at 10%?

This does not account for the interest accrued on the interest, also known as Compound Interest.

Compound Interest

S=P[1+£)
1

S is the total money accrued, P is the principal, r is the annual percentage rate (APR),
n is the number of compounding periods per year, ¢ is time in years.

Example4: SAVINGS How much money would you have to invest today at 6.5% APR~compounded
monthly-~to have $5,000 in ten years?

Example 5: SAVINGS How long will it take a $100 deposit to grow to $500 if it earns at 10% APR
compounded daily?
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TYPE III: FINANCES (SAVINGS AND LOAN ANNUITIES)

An annuity is an account where you pay a specific amount periodically (monthly, weekly, etc.) instead of just
one principal payment as you do with Compound Interest accounts. Annuities take two forms: savings and

loans.

Hit —nt
[1+-’ij -1 Im[z-s-m’i]
ANV Loans: L=P e« — 24

r r
) )

S is the amount saved, L is the amount of the loan, P is the periodic payment amount,
r 15 the annual percentage rate (APR), » is the number of payments per year, ¢ is the time in years.

Savings: S=P .

Example 6: LOAN You want to buy a $15,000 car. You can borrow the money at 4.9% APR for five years.
What will the monthly payments be?

Example 7. SAVINGS ANNUITY. Suppose you want to buy a house in ten years and you can save $100 a
month for the down payment. Suppose you find a savings fund that will earn 8% APR. How

much money will you have for the down payment in ten years?
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Section B2 Exercises

1.

10.

11.

12,

13.

14.

15.

0.43r

The number of bacteria in a culture is modeled by the function 7 () = 500¢™*", with ¢ in hours.

4. What is the initial number of bacteria?
b. How many bacteria are in the culture after three hours?
c. How long will it take the number of bacteria in the culture to reach 10,0007

The mass m(t) remaining after ¢ days from a 40g sample of thorium—234 is given by m (1) = 40"

a. How much of the sample will remain after 60 days?

b. After how long will only 10g of the sample remain?

c. Physicists express the rate of decay of radioactive isotopes in terms of half~life, the time required for
half the mass to decay. What is the half-life of thorium—-234?

If the number of bacteria in a petri dish doubles every 30 minutes, how long will it take for the number
to triple?

If a town’s population doubles every ten years and is 20,000 this year, how long will it take the
population to reach 100,0007

If a town’s population decreases exponentially and drops from 50,000 to 44,000 between 1995 and
2005, what will the population be in 2020?

I 30% of a radioactive substance disappears in 15 years, what is the half-life of the substance?

How much would you have to invest today at 6.5% APR compounded monthly to have $10,000 in ten
years?

How long will it take a $1,100 investment to grow to $10,000 if invested today at 10% APR
compounded monthly?

Is it better to invest $300 for 10 years at 3.6% compounded monthly or at 4.1% compounded quarterly?

Suppose you want to buy a house in ten years and can save $200 a month for the down payment.
You’ve found a mutual fund that will earn 4% APR. How much will you have in ten years?

Suppose you want to buy a house in ten years and will need $60,000 for the down payment. There is a
mutual fund that will earn 1.3% APR. What will be the monthly investment?

Suppose you take a $240,000 house loan at 7% APR for 30 years. What are the monthly payments and
how much will you actually pay the bank over the life of the loan?

Suppose you want to but a $40,000 car. You can borrow the money at 2.9% APR for five years. What
will the monthly payments be?

Suppose you can afford a $250 monthly payments for a car and will borrow the money at 3.9% APR for
five years. What is the maximum purchase price of the car?

Suppose you buy a $400,000 condo, making a down payment equal to 20% of the purchase price and
taking out a loan for the rest. If the loan is at 4% fixed APR compounded monthly for 30 years, find the
loan amount, the amount of each monthly payment, and the total amount paid for the condo over the
course of the loan.
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Section B3—CONIC SECTIONS OVERVIEW

Vocabular:z:
Conic Section — a figure formed by the intersection of a plane and a double—-napped cone (this means there are

two cones “nose to nose”). The angle of the plane determines whether the conic section is a circle, ellipse,

* parabola, or hyperbola

Traits — the characteristics of the graph of a function

- Domain — the set of all x—values that may be used in a function.

Range — the set of all y—values that correspond to the x—values in the function’s domain

The Conics share a common standard equation, namely,

AxX* +Bxy+Cy* +Dx+Ey+F=0.
Conics that have a Bxy term are beyond the scope of this course. Assuming the conic is non-degenerate,
identify its shape by looking at 4 and C in the standard equation as follows:

Circle A=C

Parabola A=0or C=0

Ellipse A and C have the same sign, but A= C
Hyperbola 4 and C have different signs

Additionally, each conic has a general (graphing) form that makes its traits more apparent.

Circle (x—h)l +(y-k)2 =
Parabola (x—k)zmﬁlc(y—-k) or (y—lc)2=4c(x—h)
_pV _iY
Ellipse x LT Eind) N
7 g
WAL A _ IRy
Hyperbola (x 2h) W zk) =1 or ae zh) +(y zk) =1
Ve r)’ s ry

Each conic will be explored separately; the meanings of r,, r,, ¢, 4, k, and » will be considered in future

lessons. The main point is that, while the shape can be determined from the Standard Form, the General
(Graphing) Form is required to identify traits and to sketch.

LEARNING OUTCOMES
Identify a conic from an equation in standard form.
Complete the square to change from standard to general form of a conic.
Find the domain and range of a conic.

53



Example 1:  Identify x° +3° +4x—8y =0 and find the general form

Solution: A = C, so this conic is a circle. Complete the square to convert an equation from
standard to general form.

X+ 4+4x—-8y = 0
X tdx+ 4y -8y+_ = 0+__ +_
X +4x+44+y" ~8y+16 =  0+4+16
(x+2)"+(y-4)" = 20

Example 2:  Identify x* ~4x—8y =0 and find the general form

Solution: There is only one square, so this conic is a parabola

¥ —4x-8y = 0
X —4x+ = 8y+
X -4x+4 = 8y+4

N

2 1
—2Y 8 T
(x-2) (}’ 2]
Example 3:  Identify x* +3)* +4x—12y—2=0 and find the general form

Solution: A % C, but both are positive, so this conic is an ellipse. Factor out the 3 before
completing the square in y.

X 43y +4x-12y-2 = 0
X +4x43y4 12y = 2
(x2+4x+_)+3(y2—4y+_) = 2+_ 4+
(¥ +4x+4)+3(y —4y+4) = 2+4+12
(x+2)2+3(y—22 = 18
2 02
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Example4: Identify x° —33* +4x~12y~2=0 and find the general form

Solution: A4 and C have different signs (C = —3), so this is an hyperbola.

¥ =3y +4x-12y-2 = @
X +dx-3y"—12y = 2
(+dxs_ )-3(y+ay+_ ) = 24 -
(x2+4x+4) 3(y* +4y+4) = 2+4-12
(x+2)"=3(y+2)" = 6
_(”62):(3’;2)2 _

In this course, the conics are classified in terms of their geometric traits (center, radius, foci, etc.). Another way
to look at conic sections s as a pair of irrational functions: this is the more common way to graph relations

such as the conics in your calculator. These functions are found by isolating y and using ix/— , instead of just
the positive radical. To find domain and range, look at the graph of the conic. In order to do that, isolate y.

Example 5:  Find the domain and range of 4x° +9y* —8x—32=0

Solution:
4x* +9y* —-8x-32 = 0
9 = 32+8x—4x’
, _ 32+8x—4x’
y - 9
_ 2
y o= 4 V32+8x—4x
3
Analysis of the graph shows that the domain is about —2 to 4 and the range is about -2 to 2. Use the
TRACE key to verify these.
: MB{(SE'*-BF“-#HE} 1
B i
PNE= Ll
sYy= e} -

Mathematicians typically use interval notation, rather than inequality statements, to express domain and
range, so domain is written as x € [-2, 4] and range is written as y e[-2, 2].
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Interval Notation:

Closed interval: xe [a, b] meansa<x<h
Open interval: xe(a, b) meansa<x<b
Half-open interval: xela, b) meansa <x<b
or xe(a, b]meansa<x£b

Section B3 Exercises

For each of the following standard form equations:
(a) Identify each conic;
(b) convert to general (graphing) form,
(¢} isolate y;
(d) graph on the calculator;
(e} state domain and range (use interval notation).

1. X'+ +6x-14y+54=0
2. 27 +2y =10x+2y-5=0
3. ¥ +10x—-20y+25=0

4. V' +4x+16y+4=0

5. x*+25)° +6x-100y+9=0
6. 9% +4v° +36x-8y+4=0
7. ¥ -y'—6y-3=0

8. 12x" —4y* + T2x+16y+44=0
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Section B4—CONICS II: THE PARABOLA

Vocabulary:

Parabola — the set of all coplanar points equidistant from a fixed point and a fixed line

Focus — the fixed point referred to in the parabola definition

Directrix — the fixed line referred to in the parabola definition

Latus Rectum — a segment parallel to the directrix and through the focus with endpoints on the parabola
 Eccentricity — a ratio: the distance from any point on the curve to the focus TO the distance from that point to

. the direc_trix _ _

As stated in the overview, the general equation of a parabola is:

(x~~l’1)2 =4c(y~k) or (y—~k)2 =4c(x—h)

A parabola has the following traits:

1. Vertex = (h, k)

2. The direction it opens: The curve opens in the direction of the axis of the linear variable and the sign of
4c. For example, (y— 2)2 =—5(x—3) would open left because the x is linear and the negative part of

the x—axis is left.
3. Focus: cunits from the vertex, in the direction it opens

4. Directrix: The line ¢ units from the vertex, away from the direction it opens. ltisy =k~corx=h—c,
depending on which is the linear variable.

5. Endpoints of the Latus Rectum (ELRs): coordinate points 2¢ units from the focus on the parabola.
6. The Axis of Symmetry: The line through the vertex and focus.
7. Eccentricity: e =1 for all parabolas.

REMEMBER: The key to the traits is the variable that doesn’t have the square.

This sketch illustrates most of the parabola’s traits.

.........
||||||||||
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LEARNING OUTCOMES
Find all the traits and sketch a parabolic curve.
Find the equation of a parabola from its traits.

Example 1:  Find the traits and sketch (y —2)2 =-8(x-3)

Solution:

(1) Vertex =(3,2)

(2) 1t opens left (—x).

(3) Focus: (1,2), because c=2
(4) Directrix: x =5 (note that the directrix is expressed in the form of a linear equation)
(5) ELRs: (1,6)and (1,-2)
(6) Axis of Symmetry: y=2
(MNe=1.

Example 2:  Find the traits and sketch x* +2x-4y+9=0

Solution: Convert the equation to general form first;

¥ A+2x-4y+9 = 0

X +2x+_ = 4y-9+
¥ +2x+1 = 4y-9+1
(x+1)" = 4y-8
(+1) = a(r-2)

(1) Vertex=1(-1,2)

(2) It opensup (+y).

(3) Focus: (-1, 3), becausec=1
(4) Directrix: y=-2

(5) ELRs: (-3,3)and(l,3)

(6) Axisof Symmetry: x=-1

(7)Y e=1. e e B B e T S

58




Example 3:  Find the equation of the parabola with vertex (=3 , 6) and directrix y = 9.
Solution:

The directrix is "y == ", so the y is the linear variable. The vertex is 3 units from the directrix, so
|c| =3 . The vertex is below the line, so the parabola opens down and therefore ¢ must be —3.

(x+3)' =—12(y-6)

Section B4 Exercises.

State the traits and sketch,
1. (x=1)"=8(y-2)
2. 5t =-g(y-2)

3. (y+1)' =—4(x-3)
4. (x—4) =16y

5. X +4y+4=0

&

Y —12x—4y—-44=0
7. X +2x+12y+37=0
8. » —4x+8y—28=0
Find the equation of the parabola with these traits.
9. Vertex (-1, 2) and Focus (-1, 7)
10. Vertex (0, -2} and directrix x =-3
11. Focus (0, 0) and directrix y = 4
12. Vertex (2, 1), opens up, and LR length 8
13. Focus (1, 5), ELR (1, 0), and opens right

14. ELRs (-1, 0) and (-1, 30) and directrix x= 14
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Section BS—CONICS III: THE ELLIPSE

Vocabufarﬁ: |

Ellipse — (1) the set of all coplanar points the sum of whose distances to two fixed points is a constant (the

“two focus property™)

(2) the set of all coplanar points the ratio of whose distarnces to a fixed point and a fixed line i1s a

constant e, where 0 < e <1 (the “focus — directrix property”)
Major Axis — the segment through the center and foci of the ellipse
Minor Axis — the segment perpendicular to the major axis at the center
r. —distance from the center to the ellipse in the horizontal (x) direction; sometimes called the “x—radius”

r, — distance from the center to the ellipse in the vertical () direction; sometimes called the “y—radius”

Focal Radius (¢} — distance from the center to the focus
Vertices — endpoints of the major axis

Intercepts — endpoints of the minor axis

Extent —~ domain of an ellipse

The general equation of an ellipse is:

Where a=r, orr,, whichever is larger,

b=r_orr,, whichever is smaller,

ol el )
and g~ -5 =¢-

An ellipse has the following traits:

1. Center: (h,h)
2. Vertices: a from center on the major axis (indicated by the variable with the larger denominator).
3. Intercepts: b from center on the minor axis
4, Focl: ¢ from center on the major axis

b .
5. ELRs: — from the foct

a =4

a’ :

6. Directrices:  — from the center and parallel EL, . ELR

c
to the minor axis

1
@
diregtrix

7. Eccentricity: < ; foranellipse, O0<e<1
a

The key to the traits is the variable :
with the larger denominator. -8
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LEARNING OUTCOMES
Find all the traits and sketch an ellipse.
Find the equation of an ellipse from its traits.

> 2
Example 1:  Find the traits and sketch %...;.% =]

Solution:

(1) Center: (0, 0)
(2) Vertices: (0, 5)and (0, -5)
(3) Intercepts: (3,0)and (-3, 0)
(4) Foci: (0, 4)and (0,-4).
Reasoning: a° ~b* =¢* — 25-9=16 — c=34

(5) ELRs: (2,4J, [_2,4], [_9_,_4], (__9_,_4] —
5 5 5 5

(6) Directrices: y = i%s

(7) Eccentricity: e m%

Example 2:  List the traits and sketch x* +4)° —4x+8y—8=0

Solution: x*+4y° —4x+8y-8 = 0
X —dx+4y" +8y = 8
(x2—4x+ ) 4(y +2y+ ) = 8+ +
(x2—4x+4) (y +2y+1) = 8+4+4
(x—2) +4(y+1 2 16
(=2 (+1) _ 1
16 4

(1) Center: (2,-1)

(2) Vertices: (6,-1)and (-2 ,-1) 6
(3) Intercepts: (2, 1)and (2, -3) al
(4) Foci: (2i2£,u1) 1
4
Reasoning: @’ ~b'=c* - 16-4=12 > c=123 1

(5) ELRs: (2i2ﬁ,o)and (2i2\/§,..2) S b ﬁf?\ e

L 16 8 QQJ

6) Directrices: x=2+t—=orx=2+— =
© N 7
(7) Eccentricity: ezg T
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Example 3:  Find the equation of the ellipse with intercepts (4, —1) and (0, —1) and vertices (2, ~5) and (2, 3).
Solution:

The center must be halfway between the vertices, so the center is (2 ,—1). We can see that the
distance from the center to the intercepts is 2, so b = 2 and the distance from the center to the
vertices is 4, so a = 4. The vertices are aligned vertically from one another, so the major axis is
the y—axis. Therefore,

(x—2)2 +(y+1)2 1
4 16

Example 4:  Find the equation of the ellipse with Foci (20, 0) and (0, 0) and e= %

Solution:

Because of the foci, the center is (10, 0), and the x axis is the major axis. e = % =< , but the foci
3 a

show that ¢ = 10. So a = 26, and by a’ —-b*=c¢*, b=24. Therefore,

(x-10) 5" _

26° 242

(x-10) 5> _
676 576

or,
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Section B5 Exercises

List the traits and sketch.

9 25
2 2
P G Y Y
289 64
2 2
g XY
169 144

5. 9x*+dy’ —T2x—24y+144=0

6. x*+4y"-16=0

7. 3% +2y* ~12=0

8. 16x* +25y" +160x+200y +400=0

Find the equations of the ellipse with these traits.
9. Vertices (—1, 2) and (-1, 12) and Focus (-1, 10)

10. Vertices (0, —2) and (6, —2) and Intercept (3, 0)

11, Center (0, 0) and directrix x = "22;5“
, 32
12. Foci (2, 0) and (8, 0) and LR length 5

13. Foci (1, 5) and (1, ~7) and e %
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Section B6—GRAPHING POLYNOMIAL
FUNCTIONS USING THE CALCULATOR

Vocabulary:

Degree — the maximum number of factors that appear as variables in any one term. May be expressed as a
number (3, 4) or a word {cubic, quartic).

Zeros™ (x-intercepts) — the points where the curve crosses the x-axis

Domain — the set of all x—values that may be used in a function.

Range — the set of all y—values that correspond to the x—values in the function’s domain

Extreme Points —high and low points on the curve

Maximum Point — the high point (plural: maxima)

- Minimum Point ~ the low point (plural: minima)

Relative vs. Absolute Extreme Points - relative refers to points at all the crests and troughs of the curve;
absolute refers to the highest or lowest points for the entire function

*In most math texts, “zero” or “x-intercept” only means the x—coordinate, but the calculator shows both
. coordinates. To be consistent in the context of graphing, use the above definition.

LEARNING OUTCOME:
Use a graphing calculator to find the traits and sketch an accurate graph of a polynomial function

Example 1:  List all traits and sketch f(x)=x’+2x-5

Solution:
degree: the x* term defines this function
as degree 2 (quadratic) - -
\ i
ZEros: X +2x-5=0 \ |

2 /
2 (2) -4()(-) . ]

2(1) | A

x=1.449 or —3.449 BRI
Zeros are (1.449, 0) and . \ /
(=3.449, 0) \

y—intercept: (0, -5}

minima (type).  absolute minimum at (-1, —6)

maxima (type): none
NOTE:
domain:  xeR or xe(-ow, ©) Graphing window [-10, 10]x[-10, 10]
was used; note that all points are visible.
range: ye[-6, »)
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Example 2:  List all traits and sketch f(x)=—x*+x’ +2x*

Solution: use a graphing window of [~10, 10]x[~10, 10] . Be sure all points are VISIBLE
on the sketch.

degree: the x* term defines this function - worp oo G

as degree 4 (quartic) ‘ ;

4 2 §
Zeros: '+ 27 =0 [ T N

—x? (x"’ —x—2) =0

o (x=2)(x+1) =0 N A

x=0, 2, or ~1 /

Zeros are (0, 0), (2, 0) and / l

-1,0) e / l

y—intercept: (0, 0) /4

minima (type): relative minimum at (0, 0) .

maxima (type): relative maximum at (—0.693, 0.397)
absolute maximum at (1.443, 2.833)

domain: xeR or xe(-w, »)

range: y € (~o, 2.833]
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Section B6 Exercises

For each polynomial function, fill in the blanks to describe the degree, state the x—intercepts and the y—
intercepts to the nearest thousandth, the minima and maxima (specify either relative or absolute for each) to

the nearest thousandth, and the domain and range using interval notation. Neatly sketch each function using
the coordinate planes that have been provided. Scale axes as needed; points must be visible on each sketch!!

L.

f(x)=x"-4x" +2x* + x+4
degree:

x-intercept(s):

y—intercept:

minima (type):

maxima (type):

domain:

range:

f(x)=x'+x*~x-2
degree:
x—intercept(s):
y—intercept:

minima (type):
maxima (type):
domain:

range:
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3. f(x)=x"—dx"+4x-1 JE—

degree:;

x—intercept(s):

y—intercept:

minima (type):

maxima (type):

domain:

range:

4. f(x)=x"+11x" +35x+32

degree:

x—intercept(s);

y-intercept:

minima (type):

maxima (type):

domain:

range:

5. f(x)=-x"+4x"-5x-2

degree:

x—intercept(s):

y—intercept:

minima (type):

maxima (type):

domain:

range:
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6. f(x)=x"-x"+x
degree:
x—intercept(s):
y—intercept: ;
minima (type): B i} T
maxima (type): B -
domain: _ ~ T
range: - - w:ﬁw — 5 ;:m
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Section Al
. &
6
5. L
12
3, 2%
9
4, 107
9
5, =8
12
g %
12
.
3
g M
3
9. 107
9
10__25.7r
18
. 1z
36
1, L
36

5. (1)
/A

o (22)
T

15. 1440°

16. -2160°
17.135°

19. — cm

20. 10.5 feet

ANSWERS TO EXERCISES

Section A2

1.

ST

v

A

A
v
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Section A2 (continued)

11. A
6.
v
12.
7. {
13.:45°
8. & 14. 80°
15. 60°
§‘ ig. &
6
17, =
3
T
18. =
A 4 4
0,
Section A3
1. See Unit Circle
2. See Table
3 L
'Y
4. 1
10. 5. _8
3
6. 1
7.1
8. 1
9. 0
10. 242

hl



Section A4
1. sino:zft
5
3
CoS@ = —
5
4
tang =—
3
5
csca =—
4
5
secq =—
3
3
cotar =—
4
2. sina=—--i-—
17
cosoc——L
J17
tang =4
J17
cscg = ——
4
seccxm—-«/ﬁ
1
cota =—
3. sinoz=~--i
J13
cos "——2—
J13
3
tang =——
2
J13
cscr =———
3
Ji3
seco = ——
2
2
Cot g =
3

72

1
COS O = =
J2
tano =—1
csca Z\/E
secaz—ﬁ
cota = -1
cosAd= ﬁ
3
2
tan A =—
J5
cscd = 3
2
3
secA=—
J5
cotd= £
2
: J65
sind=———
9
tan A =@
4
9
cscAd=———
J65
secAm—-9—
4
4
cot A = —=
J65
25
sinf = ——m—-
41201
24
cosB = —
1201
A/1201
csc B = ——u-—
25
1201
secB=——u—
24
cot B mz—
2



Section A4 {(continued)

8. singﬁ:mg»
J11
cosq}:T
tan;z?:—%
secgéz\/—?_l—
cotgb:—isr—l—

9 singp—M
37
cosq9=-~--\/~§’_~:/-
247
=T
cscgo"—@
247
cotgom-——z—%

10. sinw =~6~9~
61

11
COS () = mom o
61
60
tanw = ———
11
61
cSCw=—
60
61
secw =——
11
11.0.242
12.0.284
13.-0.839
14. 0.138
15.1.041
16.3.864
40.693°+360%¢
" 139.307°+ 360

}

73

~121.399°+ 3601
19. {55.072°£180°n}
20. {~56.896°+180°n)}

55.842°+360°
- { 842°+360 n}

8. { 121.399°+360% }

~55.842°+360%

22. DNE
23. DNE

1.672427n
24,

-1.672%2nn
25. {1.347 + n}
26. {~1.368 £ rn}

1.182+2xn
27.
—1.182+2xn

1.024+27zn
28.
2118+ 27n

Section A5

Note: Complete solutions are not provided here, as
multiple approaches yield the desired result. A hint
has been provided to assist in beginning each proof.

1. Convert to sine and cosine

2. Separate the fraction; convert to sine and

cosine

Factor; Pythagorean identity

Multiply; Pythagorean identities

Multiply

Multiply

Separate the fraction

Separate the fraction

Multiply

10. Distribute; convert to sine and cosine

11. Common denominator

12. Common denominator

13. Separate the fraction

14. Convert to sine and cosine

15. Common denominator

16. Factor sum of cubes

17. Factor sum of cubes

18. Pythagorean identity; factor

19. Common denominator

20. Factor difference of cubes; Pythagorean
identity

e e i



Section A6

1. —12.818i+54.375;
55.865 units at 103.264°
2. —6.134i-2.024;
6.459 units at —161.738°
3. 791.330i+320.570
853.796 units at 22.053°
4. 8.530i+0.617;

&.552 units at 4.137°
5. 403.550 mph at ~152.045°
6. 26,977 knots at 173.982°

Section A7
1. 58.761
2. 53.299
3. 26.384°,36.336°, 117.280°
4. 16.598°
5. r=19.528 0=80.169°
6. r=26.116; §=103.051°
7. r=14.664; 8 =45.838°
8. r=46.751; §="7.153°

Section A8
1. a=5.098, c=4.065, A=10.235 units’
2. d=4.634, e=5.908, 4=13.556 units’
3. k=5374,1=5275, A=11.750 units’
4, d=17.433, p=54.471, A=358.328 units
5. b=8.751, f =3.411, A=7.236 units
6. ¢=13.116, r =7.143, 4=39.289 units*
7. A=10y2 units’
8. DNE
9. A=44.466 units’

Section A9

1. m/R="T4.949°, m/L =74.051°, [ =14.935

OR

mZR =105.051°, m£L = 43.949°, [ =10.78

74
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8.

mLEF =24.655°, msE =120.345°, e=16.550
msM =10.529°, m/L=6.471°, [ =3.084
No such triangle
mZC =43.495°, mZF =101.505°, f =8.542
OR
m£LC =136.505°, mLF =8.495°, f=1.288
m4C =60° miQ=90° c=53
mZl =35.538°, m/4=116.065°, msJ =28.39
m/R="73.283°, ms/K =30.717°, [=15.197

Section A10

AW

He

1.

e

12.
13.

120.796 feet

151.411 yards and 162.717 yards
41.562; A=294.522 units’

1.699 miles

sin"! (1.272) = DNE; 40.688 feet, 12.288

feet

7515.815 feet’

1.229 miles and 8.947 miles
1605.036 feet, 92.713°, 82.287°,
1965361.327 square feet

Section Bl

Ini2
log4

1
log.| — | , which is -2,
gS(QS]
1 1
Zlogx—glogw—ilogy+3logz
2 2
3logxm~3-logw+—5~10gym4logz

—-é—logx+4logy+310gw-—§"—logz

-4
-6
5

.4

L

25

1726.999 or 1.001
0.477



Section B1 (continued)

14.10r L
2

15. 2

3

16. 2.094 or—-1.267

Section B2

1. (a) 500
(b) 1928
(c) 6.657 hours
2. (a) 7.590 grams
(b) 50.047 days
{c) 25.023 days
. 47.549 minutes
. 23.219 years

. 29,150 years
. $5,229.62
. 22.165 years
9. 4.1% compounded quarterly
10. $29,949.96
11. $468.47
12. §1,596.73; $574,821.36
13.$716.97
14. $13,608.09
15. $320,000.; $81,527.73; $§629,982.42

Section B3

1. (a)
(b)

(c)
(d)

(e)

2. (a)

3
4
5. 36322 people
6
7
8

Circle
(x+3)2 +(y—7)2

y=T%4—(x+3)

xe[-5,-1]; y[5,9]

Il

4

Circle
75

(d)

(e)

. ()

(b)

(c)
(d)

(e)

- (a)

(b)
(©)
(d)

(e)

N

x & (—o0,); ¥ e[d,oo)

Parabola
(y+8)" =~4(x~15)

y=—8i,l—4(x-15)




Section B3 (continued) (€) xe(—o0,m0);

5. (@) Ellipse y € (—,-5.449]U[-0.551,)

)] (l+3) +(y 2) =1 8. (a) Hyperbola
100 4 2 2
z (x+3) _(r=2) _
100—(x+3) (b) - =1
@ = © y=2%-12+3(x+3)

(d)

(e) xe[-13,7];ye[0,4] /

(e) xe(-w,=5]u[~1,0); y e(—w,»)

6. (a) Ellipse
(z+2)  (»-1)

®) 4 9 1 Section B4

(c) yml—i-\/m 1. (1) Vertex: (1,2)
) 4 (2) opens up

@ (3) Focus: (1,4)

(4) directrix: y=0

‘ (5) ELRs: (-3,4), (5,4)

: (6) Axis of Symmetry: x=1
(7 e=1

(e) xe[—4;0]; ye[;2,4] \/

7. (a} Hyperbola

2 (3
(b) 6+ . =1

() y=-3tV6+x*

N

v bor g

/TN

76



Section B4 (continued)

2. (1) Vertex: (0,2)

@)
&)
4
()
(6)
(7)

3. (D
@)
&)
4
()
(6)
(7)

4. (1)
)
(3)
(4)
(5)
(6)
7

opens down

Focus: (0,0)
directrix: y=4
ELRs: (4,0}, (-4,0)

Axis of Symmetry: x=0
e=1

e ’ \
Vertex: (3,-1)

opens left

Focus: (2,~1)

directrix; x=0
ELRs: (2,1), (2,-3)

Axis of Symmetry: y=-I

eg=1

N

e

Vertex: (4,0)

opens up

Focus: (4,4)

directrix: y=—4

ELRs: (12,4), (-4,4)
Axis of Symmetry: x=4
e=1

5.

Vertex: (0,-1)

77

2)
()
(4)
)
(6)
(7

opens down

Focus: (0,-2)

directrix: y=0

ELRs: (2,-2), (-2,-2)
Axis of Symmetry: x=0
e=]

(D

@)
()
(4)
()
(6)
(7)

Vertex: (-4,2)

opens right

Focus: (-1,2)

directrix: x=-7

ELRs: (-1,8), (-1,-4)
Axis of Symmetry: y=2
e=1

e

N

L ()

2)
&)
(4)
)
(6)
(7)

\

Vertex: (-1,-3)

opens down

Focus: (-1,-6)
directrix: y=0

ELRs: (-7,-6), (5,-6)

Axis of Symimetry: x=-1
e=1

i

TN




Section B4 (continued)

8. (1) Vertex: (-11,-4)
(2) opens right
(3) Focus: (~10,-4)
(4) directrix: x=-12
(5) ELRs: (-10,-2), (-10,-6)
(6) Axis of Symmetry: y=-—4
(7) e=1

/

e

9. (x+1) =20(y-2)
10. (y+2) =—12x
11, x* =8y

12. (x—2)2=8(y—1)

13. (y—5)2=10[x+%]

14. (y—15)2=—30(x—1§-J

Section B5

1. Center: (0,0)
Vertices: (5,0), (-5,0)
Intercepts: (0,4), (0,—4)
Foci: (3,0), (-3,0)
ELRs:

) - (o) (2
5 5 5 5

Directrices: x = ?5, X = 2

Eccentricity: -;1

)

78

i
NI

. Center: (-2,1)

Vertices: (-2,4), (-2,-6)
Intercepts: (-5,-1), (1,~1)
Foci: (-2,3), (-2,-5)
ELRs:
) ) (b 2
5 5 3 5
21 29

Directrices: y = VR Ay

Eccentricity: %

a

. Center: (1,1)

Vertices: (18,1), (~16,1)
Intercepts: (1,9), (1,-7)
Foci: (16,1), (-14,1)
ELRs:

(3 () () (B
17 17 17 17

304 x__2'74
15° 15

Directrices: x =

Eccentricity: mg-



Section B3 (continued) Intercepts: (0,2), (0,-2)
Foci: (2\/5,0), (—-2\/5,0)
(2v3.1), (2v3,-1),

4. Center: (0,0)
Vertices: (13,0), (-13,0)

ELRs:

Intercepts: (0,12), (0,-12) (_2\[3:,1), (2\/5,_1)
Foci: (5,0), (-5.0) g g
ELRs: Directrices: x:T, xz—-:/—g-

144 144 144 144
5 I 5: _53_ » _59__' \/—-

13 13 13 13 Eccentricity: —

169 169

Directrices: x= = x=——

5 o —

Eccentricity: >
13

/:\ 7. Center: (0,0)
NI

Vertices: (O,\/g ) ( )
)

Intercepts: (2,0}, (-2,0)

Foci: (0,42}, (0,—2)

> S/::iir;s:(dr(,j,)éj, (4,0) ELRe (%\EJ (_%’ﬁ)’
Intercepts: (2,3), (6,3) 4
Foci: (4,3+5), (4.3-45) ( J ( J6’ ﬁ]
[?334-\/5], @-,34-\/5], Directrices: ym—j——— :——\/6=
ELRs: 16 3 Eccentricity: —
(325 (5-5) ‘f

. : 9 9
Directrices: y=34+—%, y=3——+
YERE g /

Eccentricity: ? K/

6. Center: (0,0)
Vertices: (4,0), (-4,0)

79



Section BS5 (continued)

8. Center: (-5,-4)
Vertices: (0,-4), (-10,-4)
Intercepts: (-5,0), (-5,-8)
Foci: (8,—4), (-2,-4)

ELRs:
Y )
5 5 5 5
Directrices: x = —_—49, X= 139

Eccentricity: %

Section B6

1. degree: 4
x—intercept(s): (1.725,0), (3.128, 0)
y-intercept: (0, 4)
minima: relative at (-0.164, 3.908);
absolute at (2.574, —4.494)
maxima: relative at (0.591, 4.586)
domain: x e (-0, o)

range: y [-4.494, «)

. degree: 3

x—intercept(s): (1.206, 0)
y-intercept: (0, -2)

minima: relative at (0.333, -2.185)
maxima: relative at (—1,-1)
domain: x & (—co, )

range: y e (-0, )

. degree: 5

x—intercept(s): (0.269, 0), (1, 0), (1.666, 0)
y—intercept: (0, —1)

minima: relatives at (—0.632, -2.619),
(1.414, -1)

maxima: relatives at (~1.414, -1},

(0.632, 0.619)

domain: x & {—, ©)

range: y e (-, ©)

IVA

Vi




Section B6 (continued) |

4. degree: 3 \
x-intercept(s): (~6.164, 0), (=3.227, 0), B S
(—1.609, 0) !
y—intercept: (0, 32) \f
minima: relative at (—2.333, ~2.481) f \

maxima: relative at (-5, 7)
domain: x e (~o, )

6. degree: 4
x—intercept(s): (~1.325, 0), (0, 0)
y—intercept: (0, 0)
minima: absolute at (—0.885, ~1.055)
maxima: none
domain: x & (-, )

range: y e[-1.054, «)
5. degree: 5

x~intercept(s): (—1.585, 0), (-1, 0),
(-0.487, 0)
y—intercept: (0, -2)
minima: relatives at (—1.365, —0.609),
(0.733, 4.301)
maxima: relatives at (~0.733, 0.301),
(1.365,-3.391)

domain: x (-0, o)

range: y & (-, )

g1






