1) Olivia and MGO decide to become farmers and need to buy all of their farming supplies on a budget. They only have 750 feet of fencing with which to work and want to enclose a rectangular area dividing it into a row of four equal subdivisions. Find the maximum total area possible with this much fencing.

NORMAL FLOAT GUTO REfL Rfidifin CL
because there are 5 lengths that measure
x, our domain will be

$$
750=5 x+2 y
$$

$$
750-5 x=2 y
$$

$$
\left.y=\frac{750-5 x}{2} \Rightarrow A=x\left(\frac{750-5 x}{2}\right)_{\text {now go to }} \text { the calculator }\right\}
$$

$$
\begin{aligned}
& F=\text { fenclan }=750 \mathrm{ft} \\
& 750=5 x+2 y \\
& A_{\text {max }}=x y \leftarrow \text { we need to } \\
& \text { substitute for } \\
& y
\end{aligned}
$$

So the maximum area that can
be enclosed is $14,062.5 \mathrm{ft}^{2}$
2) Winston and Kanye think that Olivia and MGO are doing it all wrong and need to decide on an area first then find the minimum amount of fencing needed to enclose that area. They decide to enclose 15,000 square feet with the same 4 subdivisions. Find the minimum amount of fencing that they will need.

$$
\begin{aligned}
A & =15000=x y \Rightarrow y=\frac{15000}{x} \\
F & =5 x+2 y=5 x+2\left(\frac{15000}{x}\right) \\
& =5 x+\frac{30000}{x}
\end{aligned}
$$

Here the domain can't include zero because x is in the denominator

Now to the calculator

So the minimum ament of fencing needed is 774.597 ft
3) Edvin, Declan, and Jake M. need to find a way to use the least amount of cardboard to make a closed box with square ends and a volume of $8 \mathrm{~m}^{3}$. How much cardboard will they need?

$V=x^{2} y=8 m^{3} \Rightarrow y=\frac{8}{x^{2}}$
x by $x \quad$ sides

So the minimum amount of cardboard needed is $24 \mathrm{~m}^{2}$
4) Chloe and Nora think that Jake M is leading his group down the wrong path and need to use $25 \mathrm{~m}^{2}$ of cardboard and maximize the volume. Will they produce a box with greater volume?

$$
V=x^{2} y=x^{2}\left(\frac{25-2 x^{2}}{4 x}\right)
$$

NORMAL FLOAT AUTO REAL RADIAN CL [
Plots Plot Plot

- NY $_{1}$ EX ${ }^{2}\left(25-2 X^{2}\right) /(4 X)$
$-Y_{2}=$

$$
\begin{aligned}
& 25=2 x^{2}+4 x y \\
& 25-2 x^{2}=4 x y \\
& \frac{25-2 x^{2}}{4 x}=y
\end{aligned}
$$

So the maximum volume of
this box would be $8.505 \mathrm{~m}^{3}$

