A.M.D.G.

PRECALCULUS ACCELERATED
Spring Practice Midterm - CALCULATOR ALLOWED

NAME:
Date: \qquad Period: \qquad

Directions: Complete each of the following NEATLY IN PENCIL in the space provided. Show all work; round at THREE decimal places. Good luck!

Multiple Choice (3 pts. each)

1. The slope of the line tangent to the graph of $f(x)=-x^{2}+4 \sqrt{x}$ at the point where $x=4$ is
(a) -8
$f(x)=-x^{2}+4 x^{\frac{1}{2}}$
(b) -10
(c) -9
(d) -5
$f^{\prime}(x)=-2 x+\frac{1}{2}\left(4 x^{-1 / 2}=-2 x+2 x^{-1 / 2}=-2 x+\frac{2}{\sqrt{x}}\right.$
(e) -7

$$
f^{\prime}(4)=-2(4)+\frac{2}{\sqrt{4}}=-8+\frac{2}{2}=-8+1=-7
$$

2. Suppose you can take out a 30 -year loan for a $\$ 550,000$ house, at a fixed APR of 5.25% compounded monthly. What are your monthly payments?
(a) $\$ 114,245.95$

(b) $\$ 630.87$
(c) $\$ 3037.12$
(d) $\$ 181.09$
(e) $\$ 871.81$

$$
\frac{\frac{0.0535}{18} 550,000}{\left(1-\left(1+\frac{0.050}{12}\right)^{-360}\right)} \approx \$ 3037.12
$$

3. If $\log _{4} x+3 \log _{4} x=9$, then $x=$
(a) 1.86
$\log _{4} x+\log _{4} x^{3}=9$
(b) 2.25
(c) 9

4. Given $y=x^{2} \ln x$
a. $y^{\prime}=2$
b. $y^{\prime}=2 x \cdot \frac{1}{x}$
c. $y^{\prime}=2 x \ln x-x$
d. $y^{\prime}=2 x \ln x+x$
e. $y^{\prime}=\frac{2 x}{\ln x}$
$f=x^{2} \quad g=\ln x \quad f g^{\prime}+g f^{\prime}=x^{2} \frac{1}{x}+2 x \ln x=x+2 x \ln x$
$f^{\prime}=2 x \quad g^{\prime}=\frac{1}{x}$

$$
f=x-x^{2} \quad g=e^{-x}
$$

5. Given $y=\left(x-x^{2}\right) e^{-x}$

A.M.D.G.

$$
f^{\prime}=1-2 x \quad g^{\prime}=-e^{-x}
$$

a. $y^{\prime}=\left(1-x-x^{2}\right) e^{-x}$
b. $y^{\prime}=\left(x^{2}-3 x+1\right) e^{-x}$
c. $y^{\prime}=(1-2 x)\left(-x e^{-x-1}\right)$
d. $y^{\prime}=\frac{1-2 x}{e^{-x}}$
e. $y^{\prime}=-\frac{1-2 x}{e^{-x}}$
$-\left(x-x^{2}\right) \underline{e}^{-x}+(1-2 x) \underline{e}^{-x}=e^{-x}\left[-\left(x-x^{2}\right)+1-2 x\right]=e^{-x}\left(-x+x^{2}+1-2 x\right)=e^{-x}\left(x^{2}-3 x+1\right)$

Free Response

1. Find the domain, zeros, extreme points, and intervals of decreasing for $y=\sqrt{-2 x^{3}+7 x^{2}+50 x-175}$

Domain: $-2 x^{3}+7 x^{2}+50 x-175=0=-(x+5)(x-5)(2 x-7)$

Zeros: $x= \pm 5, \frac{7}{2}$
VA's: none
$\left.\begin{array}{l}\text { Extreme Points: } \\ \text { Intervals of Decreasing: }\end{array}\right\}$
$\left.\begin{array}{l}\text { Extreme Points: } \\ \text { Intervals of Decreasing: }\end{array}\right\}$

$$
\begin{aligned}
& y=\left(-2 x^{3}+7 x^{2}+50 x-175\right)^{1 / 2} \\
& y^{\prime}=\frac{1}{2}\left(-2 x^{3}+7 x^{2}+50 x-175\right)^{-1 / 2}\left(-6 x^{2}+14 x+50\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-6 x^{2}+14 x+50}{2 \sqrt{-2 x^{3}+7 x^{2}+50 x-175}}=0 \text { or undefined } \\
& \begin{array}{l}
\text { We already know that this is zero } \\
\text { when } x= \pm 5, \frac{7}{2} \text { so the curve is vertical at these }
\end{array}
\end{aligned}
$$

points

$$
-6 x^{2}+14 x+50=0 \text { where } x=\underbrace{-1.947}_{\begin{array}{c}
\text { not in } \\
\text { the domain }
\end{array}}, 4.280
$$

PRECALCULUS ACCELERATED
Spring Practice Midterm - NO CALCULATOR ALLOWED

NAME:
Date: \qquad Period: \qquad

Directions: Complete each of the following NEATLY IN PENCIL in the space provided. Show all work; round at THREE decimal places. Good luck!

Multiple Choice (3 pts. each)
4. The table at right gives the values of the differentiable functions f and g and their derivatives at $x=1$. If
$h(x)=(2 f(x)+3)(1+g(x))$, then $h^{\prime}(1)=$
(a) -28 requires $u=2 f(x)+3 \quad v=1+g(x)$

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	3	-2	-3	4

(b) -16 the product $\quad v^{\prime}=g^{\prime}(x)$
(c) 40 rule $u=2 f(x)$
(dd) 44
(e) 47

$$
\begin{aligned}
& h^{\prime}(x)=(2 f(x)+3) g^{\prime}(x)+2 f^{\prime}(x)(1+g(x)) \\
& h^{\prime}(1)=(2 f(1)+3) g^{\prime}(1)+2 f^{\prime}(1)(1+g(1)) \\
& h^{\prime}(1)=(2(3)+3) \cdot 4+2(-2)(1+(-3))
\end{aligned}
$$

6. Which of the following is true about the function f if $f(x)=\sqrt{\frac{x^{2}+x-2}{2 x^{2}+x-3}}$? $\quad h^{\prime}(1)=36+8=44$
I. f has a zero at $x=1$. Cant have an x-int that is also a POE
II. The graph of f has a POE at $x=1$.
III. The graph of f has a horizontal asymptote at $y=\frac{1}{2}$. horiz asymptote at $y=\sqrt{\frac{x^{2}}{2 x^{2}}}=\sqrt{\frac{1}{2}} \neq \frac{1}{2}$
(a) II only
(b) I and II only
(c) I and III only
(d) II and III only
(e) I, II and III

A.M.D.G.

Free Response (10 pts. each)
4. List all traits and sketch $y=\sqrt{\frac{2 x-3}{x^{2}+4}} \rightarrow 2 x-3 \geq 0 \Rightarrow x \geq \frac{3}{2}$

Domain: $x \geq 3 / 2 \quad x^{2}+4 \geq 4>0$

$$
\uparrow
$$

Zeros: $(3 / 2,0)$
y-int: none because plugging in zero for x gives us $y=\sqrt{-\frac{3}{4}}$
VAs: none because $x^{2}+4 \neq 0$
EB: Horizontal asymptote at $y=0$

$$
\uparrow
$$

6. List all traits and sketch $y=a^{x}$.

Domain: all reals (you can plug in any value for x)
Zeros: none because $a^{x} \neq 0$
y-int: $(0,1)$ because $a^{0}=1$

VAs: none

EB: up to the right

$a^{x}>0$ for all x so horiz asymptote at $y=0$

