Precalculus Accelerated
Spring Practice Final 2014
Part I: CALCULATOR REQUIRED

Name: \qquad

Period: \qquad Date: \qquad
All Standards covered from Chapter 5 through Chapter 9 will be covered for this exam.

Multiple Choice

1. $\lim _{x \rightarrow 0} \frac{\sqrt{49-x^{2}}-7}{9 x}=\frac{0}{0} \quad$ L'Hopital's Rule
(a) $-\frac{1}{9} \quad \lim _{x \rightarrow 0} \frac{\frac{1}{2}\left(49-x^{2}\right)^{-1 / 2}(-2 x)}{9}=\lim _{x \rightarrow 0} \frac{x}{9 \sqrt{49-x^{2}}}=0$
(b) $-\frac{7}{9}$
(c) 1
(d) 0
(e) DNE
2. If $\$ 300$ is invested at 3% compounded continuously, how long (to the nearest year) will it take for the money to double? (Use the formula $A=P e^{r t}$)
(a) 26
(b) 25
(c) 24
(d) 23
(e) 22

$$
\begin{array}{rlrl}
600 & =300 e^{0.03 t} & \\
\alpha & =e^{0.03 t} & 0.03 t=\ln 2 \\
\ln 2 & =\ln e^{0.03 t} & t=\frac{\ln 2}{0.03} \approx 23
\end{array}
$$

3. If $\sin y=-\frac{7}{25}$, find $\cos 2 y$.
(a) $-\frac{48}{25}$
(b) $-\frac{14}{25}$
$\cos 2 y=\cos ^{2} y-\sin ^{2} y=\left(+\frac{24}{25}\right)^{2}-\left(-\frac{7}{25}\right)^{2}=\frac{527}{625}$
(c) $\frac{134}{625}$
(d) $\frac{527}{625}$
(e) Cannot be determined without knowing the quadrant that y lays in
A.M.D.G.
4. At what point on the graph of $y=\ln x$ is the tangent line parallel to $x-2 y=1$?
(a) $\left(\frac{1}{2}, 2\right)$

$$
y^{\prime}=\frac{1}{x}
$$

$$
m=\frac{1}{2}
$$

(b) $\left(\frac{1}{2}, \ln \frac{1}{2}\right)$
(c) $(1,0)$
(dd) $(2, \ln 2)$
(e) $\left(e^{2}, 2\right)$
5. Write the equation of a sine function with the following characteristics:

Amplitude: 5
Period: 3π
(b) $y=5 \sin \left(3 x-\frac{2 \pi}{9}\right)$
Phase Shift: $\frac{\pi}{3}$
(a) $y=5 \sin \left(3 x+\frac{2 \pi}{9}\right)$
(e) $\underbrace{y=5 \sin \left(\frac{2}{3} x-\frac{2 \pi}{9}\right)}_{y=5 \sin \left[\frac{2}{3}\left(x-\frac{\pi}{3}\right)\right]}$
(d) $y=5 \sin \left(\frac{3}{2} x+\frac{2 \pi}{9}\right)$

Free Response

1. Find the domain, zeros, and extreme points of $f(x)=-\sqrt{x^{2}-2 x}$.

Domain: $x^{2}-2 x \geq 0 \Rightarrow x(x-2) \geq 0 \Rightarrow \frac{+0}{+1} \begin{gathered}1+ \\ 0 \\ 2\end{gathered} \quad \operatorname{Domain} \quad x \in(-\infty, 0] \cup[2, \infty)$
Zeros: $\quad(0,0) \quad(2,0)$
Extreme Points: $\quad f(x)=-\left(x^{2}-2 x\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& f^{\prime}(x)=-\frac{1}{2}\left(x^{2}-2 x\right)^{-3 / 2}(2 x-2)=-\frac{x-1}{\left(x^{2}-2 x\right)^{3 / 2}}=0 \text { or under } \\
& f^{\prime}=0 \text { when } x-1=0 \Rightarrow x=1 \\
& f^{\prime}=\text { under where } x^{2}-2 x=0 \Rightarrow x=0,2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Extreme Values at }(0,0) \text { and }(2,0) \\
& \max \max
\end{aligned}
$$

A.M.D.G.

2. Find the domain and extreme points of $f(x)=x^{2} e^{-x}$.

Domain: All Reals
Extreme Points: $f^{\prime}(x)=2 x e^{-x}-x^{2} e^{-x}=x e^{-x}(2-x)=\gamma$

3. Sketch carefully the primary cycle of $y=3-\cos [2(x+4 \pi)]$. Show coordinates of all maxima, minima, and axis points. State the values of k, A, Period, and h. Write linear equations for sinusoidal axes and asymptotes.
$k=3$
$A=1$
Period $=\pi$
$h=4 \pi$

Precalculus Accelerated
Spring Practice Final 2014
Part II: NO CALCULATOR ALLOWED

Name: \qquad

Period: \qquad Date: \qquad
Directions: Complete each of the following NEATLY IN PENCIL in the space provided. Show all work. Round at THREE decimal places. Good Luck!

Multiple Choice (3 pts. each)
6. Let the graph at right represent $f(x)$ on the interval $[-2,2]$. For which values of x is $f^{\prime}(x)=0$?
(a) $-2,-1,0,1,2$
(b) 0
(c) $-1,1$
(d) $-2,-1,1,2$
(e) $-1.7,0,1.7$

7. Which of the following lines intersects $y=3 \sin x+2$?
(a) $y=-2$
(b) $y=7$
(c) $y=3$
(d) $y=-5$
(e) None of these lines intersect the graph
4. A ship sails 40 miles on a bearing of 30°, then it turns and sails 60 miles on a bearing of 100°. How far away from its starting point and on what bearing is it?

$$
\begin{aligned}
& \vec{v}=\left(40 \cos 30^{\circ}\right) i+\left(40 \sin 30^{\circ}\right) j \\
& \vec{w}=\left(60 \cos 100^{\circ}\right) i+\left(60 \sin 100^{\circ}\right) j
\end{aligned}
$$

$$
\begin{aligned}
& \text { How far away }=|\vec{v}+\vec{w}| \\
& \begin{aligned}
& \vec{v}+\vec{w}=\underbrace{\left.40 \cos 30^{\circ}+60 \cos 100^{\circ}\right)}_{\text {stored in } A} i+\underbrace{40 \sin 30^{\circ}+60 \sin 10^{\circ}}_{\text {storedin } B}) j \\
& \text { (recommend storing these valves on the calculator) } \\
& \approx 24.222 i+79.088 j \\
&|\vec{v}+\vec{w}|=\sqrt{A^{2}+B^{2}} \approx 82.715 \text { miles }
\end{aligned}
\end{aligned}
$$

Bearing $=\theta= \pm \cos ^{-1}\left(\frac{A}{|v+w|}\right) \approx 72.972^{\circ}$

A.M.D.G.

Free Response

5. Find all traits and sketch $f(x)=e^{\sqrt{x^{2}-2 x}}$

Domain: $\quad x^{2}-2 x \geq 0 \Rightarrow x(x-2) \geq 0 \Rightarrow \frac{+0}{+0} \begin{gathered}1 \\ 0 \\ 0\end{gathered} \quad$ 2 \quad Domain $\quad x \in(-\infty, 0] \cup[2, \infty)$
Zeros: none
y-intercept: $(0,1)$
VAs: none

EB: none

POEs: none
Extreme Points: $y^{\prime}=e^{\sqrt{x^{2}-2 x}}\left(\frac{x-1}{\left(x^{2}-2 x\right)^{3 / 2}}\right)=0$ or undef
Range: $y \geq 1$

$$
f^{\prime}=0 \text { when } x-1=0 \Rightarrow x=1
$$

$$
f^{\prime}=\text { undef wher } x^{2}-2 x=0 \Rightarrow x=0,2
$$

$$
\begin{array}{ccc}
- \text { undef }^{\text {NOT }} & \text { O}^{\text {IN DOMAIN }} \text { indef } & + \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}
$$

6. Convert the given radian angle measures to degrees
a) $\frac{2 \pi}{15} \mathrm{rad} \cdot\left(\frac{180^{\circ}}{\pi \mathrm{rad}}\right)$
b) $-\frac{8 \pi}{9}$
c) $\frac{31 \pi}{30}$
24°
-160°
186°
7. Using the unit circle only, find all values of $0^{\circ}<\theta<360^{\circ}$ for which $\cos \theta=-\frac{1}{2}$

$$
\begin{aligned}
& \cos \theta<0 \text { in } Q \mathbb{I} \text { and III } \\
& \text { ref angle }=60^{\circ} \\
& \theta=120^{\circ} \text { and } 240^{\circ}
\end{aligned}
$$

8. Simplify $\sec \frac{4 \pi}{3}+\cot ^{2} \frac{7 \pi}{6}$

$$
\frac{1}{\cos \frac{4 \pi}{3}}+\frac{1}{\tan ^{2} \frac{\pi \pi}{6}}=-2+(-\sqrt{3})^{2}=1
$$

9. Given the angle θ in Quadrant III, find all possible values of θ for which $\sin \theta=-0.9612616959$

$$
\theta=254^{\circ} \pm 360 n
$$

10. Given the angle θ for which $\cos \theta=0.2756373558$, find the possible values of θ over the interval $0<\theta<360^{\circ}$.

$$
\begin{aligned}
\cos ^{-1}(0.2756373558)=74^{\circ}, & -74^{\circ} \\
& \uparrow \\
& \text { not between } 0^{\circ} \text { and } 360^{\circ} \\
& \text { so just add } 360^{\circ}
\end{aligned}
$$

$$
\theta=74^{\circ}, 286^{\circ}
$$

