Precalculus Accelerated Spring Practice Final 2014

Part I: CALCULATOR REQUIRED

Period: Date:

### All Standards covered from Chapter 5 through Chapter 9 will be covered for this exam.

## **Multiple Choice**

1. 
$$\lim_{x\to 0} \frac{\sqrt{49-x^2}-7}{9x} = \frac{0}{0}$$
 L'Hopital's Ryle

(a) 
$$-\frac{1}{9}$$

$$\lim_{x \to 0} \frac{\frac{1}{2}(49 - x^2)^{-y_2}(-2x)}{9} = \lim_{x \to 0} \frac{x}{9\sqrt{49 - x^2}} = 0$$

- (b)  $-\frac{7}{0}$
- (c) 1
- (d) 0
- (e) DNE
- 2. If \$300 is invested at 3% compounded continuously, how long (to the nearest year) will it take for the money to double? (Use the formula  $A = Pe^{rt}$ )

$$600 = 300e^{0.03t}$$

$$2 = e^{0.03t}$$

$$10.2 = 10e^{0.03t}$$

$$10.03t = 102$$

$$10.03t = 102$$

$$t = \frac{\ln 2}{0.03} \approx 23$$

3. If  $\sin y = -\frac{7}{25}$ , find  $\cos 2y$ .

(a) 
$$-\frac{48}{25}$$

(b) 
$$-\frac{14}{25}$$

$$\cos 2y = \cos^2 y - \sin^2 y = \left(\frac{24}{25}\right)^2 - \left(\frac{7}{25}\right)^2 = \frac{527}{625}$$

(c) 
$$\frac{134}{625}$$

(d) 
$$\frac{527}{625}$$

(e) Cannot be determined without knowing the quadrant that y lays in

4. At what point on the graph of 
$$y = \ln x$$
 is the tangent line parallel to  $x - 2y = 1$ ?

(a) 
$$\left(\frac{1}{2}, 2\right)$$
  $y' = \frac{1}{x}$   $m_{\tau} = \frac{1}{x} = \frac{1}{2}$ 

(b) 
$$\left(\frac{1}{2}, \ln \frac{1}{2}\right)$$

- (c) (1, 0)
- (d)  $(2, \ln 2)$
- (e)  $(e^2, 2)$
- 5. Write the equation of a sine function with the following characteristics:

Amplitude: 5 Period:  $3\pi$  Phase Shift:  $\frac{\pi}{3}$ 

(a) 
$$y = 5\sin\left(3x + \frac{2\pi}{9}\right)$$
 (b)  $y = 5\sin\left(3x - \frac{2\pi}{9}\right)$  (c)  $y = 5\sin\left(\frac{2}{3}x + \frac{2\pi}{9}\right)$ 

(d) 
$$y = 5\sin\left(\frac{3}{2}x + \frac{2\pi}{9}\right)$$
 (e)  $y = 5\sin\left(\frac{2}{3}x - \frac{2\pi}{9}\right)$ 

# Free Response

1. Find the domain, zeros, and extreme points of  $f(x) = -\sqrt{x^2 - 2x}$ .

Domain:  $x^2 - 2x \ge 0 \implies x(x-2) \ge 0 \implies \frac{+ \circ - \circ +}{\circ - 2}$   $x \in (-\infty, 0] \cup [2, \infty)$ 

Zeros: (0,0) (2,0)

Extreme Points:  $\int (x) = -\left(x^2 - \partial_x\right)^{\frac{1}{2}}$   $\int (x) = -\frac{1}{2} \left(x^2 - \partial_x\right)^{-\frac{3}{2}} \left(\partial_x - \partial_x\right) = -\frac{x - 1}{\left(x^2 - \partial_x\right)^{\frac{3}{2}}} = 0 \text{ or undef}$ 

$$f'=0 \text{ when } X-1=0 \Rightarrow X=1$$

$$f'=\text{undef when } X^2-2X=0 \Rightarrow X=0,2$$

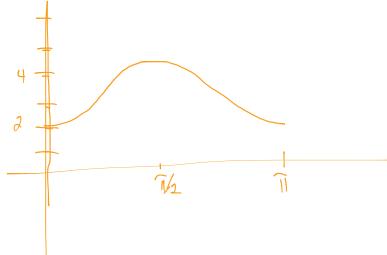
$$+ \text{undef } 0 \text{ Domain} \text{undef} -$$

2. Find the domain and extreme points of  $f(x) = x^2 e^{-x}$ .

Domain: All Reals

Extreme Points:  $f'(x) = \partial x e^{-x} - x^2 e^{-x} = x e^{-x} (\partial x) = \partial x = \partial x$ 

Extrema Valves at (0,0) and (2, 4)


3. Sketch carefully the primary cycle of  $y = 3 - \frac{\cos x}{\sin x} \left[ 2(x + 4\pi) \right]$ . Show coordinates of all maxima, minima, and axis points. State the values of k, A, Period, and h. Write linear equations for sinusoidal axes and asymptotes.

k = 3

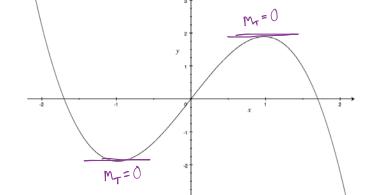
A = 1

Period =  $\widehat{n}$ 

 $h = 4\widehat{1}$ 



Precalculus Accelerated Spring Practice Final 2014 Name:


Part II: NO CALCULATOR ALLOWED

Period: \_\_\_\_\_ Date: \_\_\_\_\_

**Directions:** Complete each of the following NEATLY IN PENCIL in the space provided. Show all work. Round at **THREE** decimal places. Good Luck!

## Multiple Choice (3 pts. each)

6. Let the graph at right represent f(x) on the interval [-2, 2]. For which values of x is f'(x) = 0?



- (a) -2, -1, 0, 1, 2
- (b) 0
- (c) -1, 1
- (d) -2, -1, 1, 2
- (e) -1.7, 0, 1.7
- 7. Which of the following lines intersects  $y = 3\sin x + 2$ ?

(a) 
$$y = -2$$

(b) 
$$y = 7$$

$$(c) y = 3$$

(d) 
$$y = -5$$

- (e) None of these lines intersect the graph
- 4. A ship sails 40 miles on a bearing of 30°, then it turns and sails 60 miles on a bearing of 100°. How far away from its starting point and on what bearing is it?

$$\vec{V} = (40 \cos 30^{\circ})i + (40 \sin 30^{\circ})j$$
  
 $\vec{N} = (60 \cos 100^{\circ})i + (60 \sin 100^{\circ})j$ 

How far away = 
$$|\vec{v}+\vec{w}|$$
  
 $\vec{v}+\vec{w}=(40\cos 30^{\circ}+60\cos 100^{\circ})i+(40\sin 30^{\circ}+60\sin 100^{\circ})j$   
Stored in A stored in B  
(recommend storing these values on the calculator)  
 $\approx 34.222i+79.088j$   
 $|\vec{v}+\vec{w}|=\sqrt{A^2+B^2}=82.715$  miles

Bearing = 
$$\theta = \pm c_0 s^{-1} \left( \frac{A}{|V+W|} \right) \approx 72.972^{\circ}$$

# **Free Response**

5. Find all traits and sketch  $f(x) = e^{\sqrt{x^2 - 2x}}$ 

Domain:  $x^2 - 2x \ge 0 \implies x(x - 2) \ge 0 \implies \frac{+ \circ - \circ +}{\circ - 2}$   $\rightarrow 0$  or  $ain x \in (-\infty, 0] \cup [2, \infty)$ 

Zeros: none

y-intercept: (0,1)

VAs: none

EB: none

POEs: none

Extreme Points:  $y' = e^{\sqrt{x^2-2x}} \left( \frac{x-1}{(x^2-2x)^{3/2}} \right) = 0$  or undef

Range:  $y \ge 1$ 



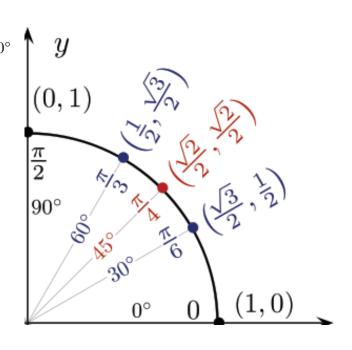
f'=0 when  $x-1=0 \Rightarrow x=1$ 

f'= under when  $x^2-2x=0 \Longrightarrow x=0,2$ 



6. Convert the given radian angle measures to degrees

- a)  $\frac{2\pi}{15}$  rad  $\cdot \left(\frac{180^{\circ}}{11700}\right)$ 
  - 24°


- b)  $-\frac{8\pi}{9}$ 
  - -1600

c)  $\frac{31\pi}{30}$ 

Extreme Values at (0,1) and (2,1)

1860

7. Using the unit circle only, find all values of  $0^{\circ} < \theta < 360^{\circ}$  for which  $\cos \theta = -\frac{1}{2}$ 



8. Simplify  $\sec \frac{4\pi}{3} + \cot^2 \frac{7\pi}{6}$ 

9. Given the angle  $\theta$  in Quadrant III, find **all** possible values of  $\theta$  for which  $\sin \theta = -0.9612616959$ 

$$\sin^{-1}(-0.9612616959) = -74^{\circ}, 180-(-74^{\circ})$$

$$254^{\circ}$$

$$0 = 254^{\circ} \pm 360n$$

$$0 = 254^{\circ} \pm 360n$$

10. Given the angle  $\theta$  for which  $\cos \theta = 0.2756373558$ , find the possible values of  $\theta$  over the interval  $0 < \theta < 360^{\circ}$ .