\qquad
Given the equation for the position of a particle at time t, indicate
a) when the particle changes directions $x^{\prime}(t)=0$
b) where the particle changes directions $\quad x(t)$ when $x^{\prime}(t)=0$ (plug your an swers to part (a) into $x(t)$)
c) what is its acceleration when it changes directions plug your answer to part (a) into $x^{\prime \prime}(t)$

1) $x(t)=t^{2}-9 t-14$
a) $x^{\prime}(t)=2 t-9=0$
b) $x\left(\frac{9}{2}\right)=\left(\frac{9}{2}\right)^{2}-9\left(\frac{9}{2}\right)-14=-34.25$
$2 t=9$
$t=\frac{9}{2}$
c) $x^{\prime \prime}(t)=2$

$$
x^{\prime \prime}\left(\frac{9}{2}\right)=2
$$

2) $y(t)=t^{3}-9 t^{2}+15 t+4$

a) $y^{\prime}(t)=3 t^{2}-18 t+15=0$

$$
1<t<5
$$

$$
\begin{array}{ll}
=3\left(t^{2}-6 t+5\right)=0 & \text { b) } \\
=3(1)=11 \\
=3\left(t^{+}-1\right)\left(t^{-}-5\right)=0 & x(5)=-21
\end{array}
$$

$$
\text { c) } y^{\prime \prime}(t)=6 t-18
$$

$$
y^{\prime \prime}(1)=-12
$$

$$
t=1,5
$$

$$
y^{\prime \prime}(5)=12
$$

$$
\left\langle 3 t^{4}-22 t^{3}+30 t^{2}+48 t+1, t\right\rangle
$$

3) A particle moves along the path given by the parametric equations $x(t)=3 t^{4}-22 t^{3}+30 t^{2}+48 t+1$ and $y(t)=t$ over the interval $0 \leq t \leq 5$
a) Find the instants) when the particle is going straight up.

$$
\begin{aligned}
& x^{\prime}(t)=12 t^{3}-66 t^{2}+60 t+48=0=6\left(2 t^{3}-11 t^{2}+10 t+8\right) \\
&=6(t-2)\left(2 t^{2}-7 t-4\right) \\
& t=\frac{11}{2}, 2,4 \\
&(2 t+1)(t-4) \\
& t=2 \text { seconds and } 4 \text { seconds }
\end{aligned}
$$

b) Find the location of the particle at for the times) in part a)

$$
x(2)=89 \quad y(2)=2
$$

$$
x(4)=33 \quad y(4)=4
$$

4) Katrina, Michelle, and Lauren are sitting at the origin on the $x-y$ plane bemoaning how long it has taken them to star in a Pre-Calc problem. When Lauren and Michelle begin arguing over who is the more deserving student, in a fit of rage, Michelle starts chasing Lauren. Haley, seeing this coming, starts timing the chase at the moment Lauren starts running and continues to do so for 7 seconds. She also tracks the motion and determines the position vector for the path of the chase to be $\langle x(t), y(t)\rangle=\left\langle t^{4}-15 t^{3}+75 t^{2}-125 t-2, t^{2}-6 t\right\rangle$
a) At what point on the $x-y$ plane are they sitting when the chase starts?

$$
\langle x(0), y(0)\rangle=\langle-2,0\rangle
$$

b) In what directions (both x and y) do they initially start running? Justify your answer.

$$
\left\langle x^{\prime}(0), y^{\prime}(0)\right\rangle
$$

$\begin{array}{ll}x^{\prime}(t)=4 t^{3}-45 t^{2}+150 t-125 \quad\left\langle x^{\prime}(0), y^{\prime}(0)\right\rangle=\langle-125,-6\rangle & \begin{array}{l}\text { so they are running down and to } \\ y^{\prime}(t)=2 t-6\end{array} \\ \text { the left }\end{array}$
c) In what directions are they running at $t=2$ seconds? What is their speed at this time?

$$
\begin{aligned}
\left\langle x^{\prime}(2), y^{\prime}(2)\right\rangle=\langle 27,2\rangle \quad \text { speed } & =\sqrt{\left[x^{\prime}(2)\right]^{2}+\left(y^{\prime}(2)\right)^{2}}=\sqrt{27^{2}+2^{2}}=\sqrt{733} \\
& \approx 27.074
\end{aligned}
$$

d) Do they ever change vertical directions? When and where?

$$
\begin{aligned}
& y^{\prime}(t) \text { changes signs } \\
& \begin{array}{cl}
2 t-6=0 & \frac{1}{2}+ \\
t=3 & 0 \\
\hline
\end{array} \\
& \text { e) When is their horizontal motion to the left? } \\
& x^{\prime}(t)=4 t^{3}-45 t^{2}+150 t-125<0 \\
& \text { Use synthetic div with } t=5 \\
& x^{\prime}(t)=\left(4 t^{2}-25 t+25\right)(t-5)=(4 t-5)(t-5)(t-5)=0 \quad 0<t<1.25 \text { seconds }
\end{aligned}
$$

f) Does their horizontal motion ever stop and then start again without changing directions?

$$
\text { Yes at } t=5(\text { see } \operatorname{sign} \text { pattern in part } e))
$$

