Law of Cosines

 angles with a right triangle, we had the pythagorean theorem plus all the trig functions to use.
$\sin A=\frac{a}{c}$
$\cos A=\frac{b}{c}$
$\tan A=\frac{a}{b}$
$\sin B=\frac{b}{c}$
$\cos B=\frac{a}{c}$
$\tan B=\frac{b}{a}$

But what happens if it is not a right triangle?

With some clever

 mathematical manipulation we won' t discuss here, we have a way of solving these:
The Law of Cosines

$$
a^{2}+b^{2}-2 a b \cos C=c^{2}
$$

Notice how this is actually the Pythagorean Thm with the added term

The Law of Cosines

$$
\begin{aligned}
& a^{2}+b^{2}-2 a b \cos C=c^{2} \\
& b^{2}+c^{2}-2 b c \cos A=a^{2} \\
& a^{2}+c^{2}-2 a c \cos B=b^{2}
\end{aligned}
$$

They' re all the same. This is just to assure you that the law applies to any labeling you use for a triangle.

And when we need to use it to solve for a missing angle, we have

$$
C=\cos ^{-1} \frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

More on this in class...

$$
\begin{aligned}
& \text { Find the missing side } \\
& 8^{2}+11^{2}-2(8)(11) \cos 77=c^{2} \\
& b=11 \\
& c^{2} \approx 145.409 \\
& c=12.059
\end{aligned}
$$

Find the missing angle

$$
8^{2}+11^{2}-2(8)(11) \cos C=10^{2}
$$

C A

$$
-2(8)(11) \cos C=10^{2}-8^{2}-11^{2}
$$

$\cos C=\frac{8^{2}+11^{2}-10^{2}}{2(8)(11)}$

$$
\cos C=\frac{10^{2}-8^{2}-11^{2}}{-2(8)(11)}
$$

$$
C=\cos ^{-1}\left(\frac{8^{2}+11^{2}-10^{2}}{2(8)(11)}\right) \approx 61.121^{\circ}
$$

Both the numerator and the denominator need parentheses. The calculator needs to see the terms like this:

$$
C=\cos ^{-1}\left(\frac{\left(8^{2}+11^{2}-10^{2}\right)}{(2(8)(11))}\right)
$$

Without them the calculator will read it like this:

$$
C=\cos ^{-1}\left(8^{2}+11^{2}-\frac{10^{2}}{2} * 8 * 11\right)
$$

