Arcs \& Chords

It is considered the major arc because it lies outside of the central angle $m \angle A B C$ while the minor arc lies inside the central angle

$$
\overparen{A C} \approx \overparen{D E}
$$

A radius or diameter of a circle is perpendicular to the chord iff it bisects the chord

How would we find the area of this sector?

Since the area of the full circle is

$$
A=\pi r^{2}
$$

We just need to find what fraction of the circle this sector is

To do this, we need the measure of the central angle $m \angle A B C$

$$
\left.A_{\text {sector }}=\pi r^{2} \frac{m \angle A B C}{360^{\circ}} \left\lvert\, \begin{array}{l}
\text { Determines } \\
\text { what portion of } \\
\text { the circle is } \\
\text { represented by } \\
\text { the angle }
\end{array}\right.\right]
$$

$$
L=2 \pi r \frac{m \angle A B C}{360^{\circ}}
$$ fraction by circumference

How would we find the area of this sector?

$$
m \angle A B C=72^{\circ}
$$

The radius of the circle is 4 cm
Find the area of the sector $A B C$ and arc length $A C$
$A_{\text {sector }}=\pi 4^{2} \frac{72^{\circ}}{360^{\circ}}=\pi 4^{2} \frac{1}{5}=\frac{16 \pi}{5} \mathrm{~cm}^{2}$
$L=2 \pi 4 \frac{72^{\circ}}{360^{\circ}}=\frac{8 \pi}{5} \mathrm{~cm}$

We can also now find the area of both the triangle and the segment between it and the arc

$$
\mathrm{A}_{\text {segment }}=\mathrm{A}_{\text {sector }}-\mathrm{A}_{\text {triangle }}
$$

Note that the triangle will always be at least isosceles so as long as we have the central angle we can find everything else

