
Transformations



  
vx ,vy

 vx

 
vy

This is a Vector

It appears as a line segment 
that connects two points

It also has something else: Direction

But the best part is it’s really just the hypotenuse of a right triangle

What are those symbols inside the chevrons?  

They are the x and y coordinates of the vector.

and it is expressed like this:
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This is a Vector

It appears as a line segment 
that connects two points

This is not the same as the point (5, 3)

This refers to a horizontal displacement of 5

and a vertical displacement of 3

Vectors in a Plane

Now let’s take a look at this on a graph



- Moving the graph across and/or down the xy planeTranslation
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(x, y) à (x + 1, y – 5)

By how much are 
the x and y
coordinates changed 
here?
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Your book will call it a rigid motion

A composition consists 
of two or more rigid 
motions
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Translate the given 
triangle along the 
vector
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Reflection across the x-axis

(x, y) à (x, –y)
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Note that the x-axis here is the 
axis of symmetry.

The axis of symmetry acts as 
a reflector that bisects the 
combined figure.

Example: x = 3 is the axis of 
symmetry for the isosceles 
triangle
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Reflection across the y-axis
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(x, y) à (–x, y)
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Note that the y-axis here is the 
axis of symmetry.

The axis of symmetry acts as 
a reflector that bisects the 
combined figure.

Example: both the lines 
x = 3 and y = 2 are axes 
of symmetry for the 
square
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(x, y) à (–x, –y)

Reflection across the origin
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(x, y) à (–x, –y)

Reflection across the origin
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- Increasing the size by a given scale factorDilation

(x, y) à (3x, 3y)

By how much are 
the x and y
coordinates changed 
here?
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- Rotating the x and y coordinates so that the figure is  
rotated

Rotation

(x, y) à (–y, x)

Here is a 90 degree 
rotation to the right 
about the origin
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- Rotating the x and y coordinates so that the figure is  
rotated

Rotation

(x, y) à (–y, x)

Here is a 90 degree 
rotation to the right 
about the origin
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