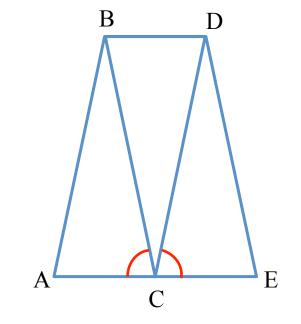
Corresponding Parts of Congruent Triangles are Congruent

CPCTC

Given $\triangle BCD$ is an isosceles triangle (with \overline{BD} as the base) $\angle ACB \cong \angle ECD$ C is the midpoint of \overline{AE} Prove $\triangle ABC \cong \triangle EDC$



$\angle ACB \cong \angle ECD$		
$\overline{BC} \cong \overline{DC}$		
$\overline{AC} \cong \overline{CE}$		
$\triangle ABC \cong \triangle EDC$		

Given

Congruent sides of an isosceles triangle

Definition of midpoint

SAS

Given $\triangle BCD$ is an isosceles triangle (with \overline{BD} as the base) $\angle ACB \cong \angle ECD$ C is the midpoint of \overline{AE} Prove $\overline{AB} \cong \overline{DE}$

We already have proven congruent triangles.

$\angle ACB \cong \angle ECD$	Given		
$\overline{BC} \cong \overline{DC}$	Congruent sides of an isosceles triangle		
$\overline{AC} \cong \overline{CE}$	Definition of midpoint		
$\vartriangle ABC \cong \vartriangle EDC$	SAS		
$\overline{AB} \cong \overline{DE}$	CPCTC This step is all we have to add		

В

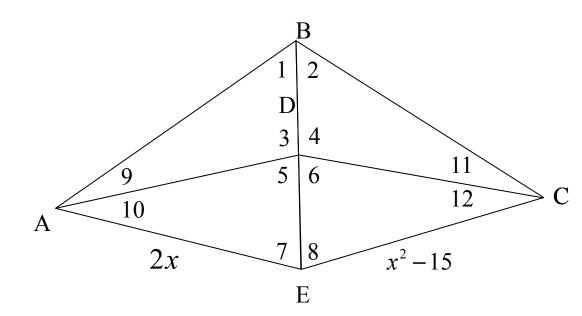
С

Α

D

E

Given $\angle 3 \cong \angle 4$ $\overline{AD} \cong \overline{DC}$ Prove $\overline{AB} \cong \overline{CB}$ Solve for x

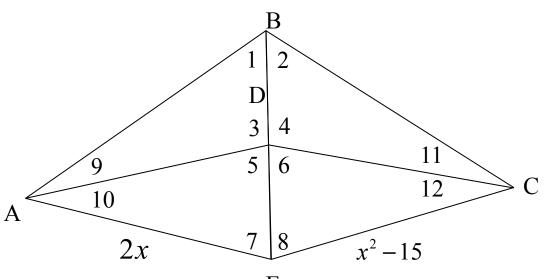


$\angle 3 \cong \angle 4 \overline{AD} \cong \overline{DC}$	Given

Before we can solve for *x*, we have to prove that $\overline{AE} \cong \overline{CE}$

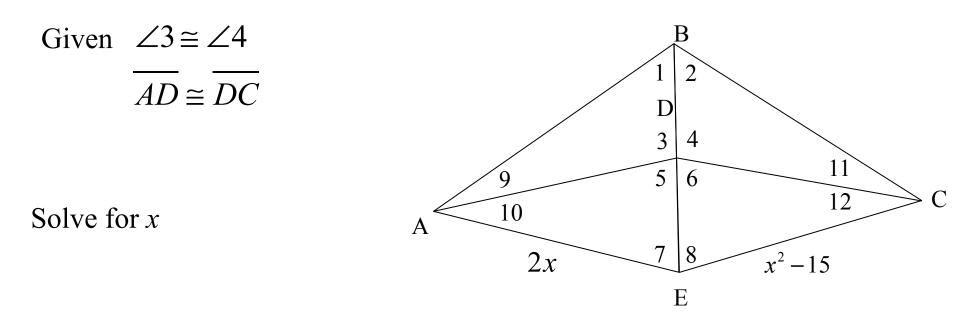
Given $\angle 3 \cong \angle 4$ $\overline{AD} \cong \overline{DC}$

Solve for *x*



E

$\angle 3 \cong \angle 4 \overline{AD} \cong \overline{DC}$	Given



We've just proved that $\triangle ADE \cong \triangle CDE$

By CPCTC we know that $\overline{AE} \cong \overline{CE}$ Mak AE = CE both $2x = x^2 - 15$ $0 = x^2 - 2x - 15$ 0 = (x - 5)(x + 3)x = -3,5

Make sure that you test **both** values!

x = 5

