The Law of Complements

$$
\mathbf{P}(\mathbf{A})=1-\mathbf{P}\left(\mathbf{A}^{\mathrm{C}}\right) \quad \text { or } \quad \mathbf{P}\left(\mathbf{A}^{\mathrm{C}}\right)=1-\mathbf{P}(\mathbf{A})
$$

	-	-	$\square:$	\square	\square
	.	$\bigcirc \square$	¢ : $:$	$\square \square$	\bigcirc
$\because \cdot$	$\because \square$	$\because \because$	$\because:$	$\because \because$	
	: $:$: \because	: $: ~: ~$	$\because: \because$:
$\because \cdot$	\because	$\because \because$	$\because: B$	$\because \because$	\because
\square	: $:$: $:$: $:$: $:$: $:$

This is just like the dice problem from earlier.
What is the probability of rolling a number greater than 4 ?
Since $\mathrm{P}(2)+\mathrm{P}(3)+\mathrm{P}(4)+\mathrm{P}(5)+\mathrm{P}(6)+\mathrm{P}(7)+\mathrm{P}(8)+\mathrm{P}(9)+\mathrm{P}(10)+\mathrm{P}(11)+\mathrm{P}(12)=$

$$
\mathrm{P}(\text { greater than } 4)=1-\mathrm{P}(4 \text { or less }) \quad=1-6 / 36=1-1 / 6=\mathbf{5 / 6}
$$

Law of Complements

A certain blood disease appears in 1.5% of the population. When testing for this disease, to save time and resources, a lab mixes 5 blood samples into one and tests the one sample at once.
$\mathrm{P}(\underline{\text { one person testing positive })}=0.015 \quad \mathrm{P}($ one person testing negative $)=0.985$

Negative resulfermeans the possibibititiase result means:
All five people are not infected

At least one of them is infected so all five have to be retested individually

Sample
Space

There are many different ways to get a positive result so we would have to add all of the probabilities of each combination of negatives and positives.
But there is only one way to get a negative result...

There are actually 31 different ways for at least one positive to appear.

So instead of adding all of the positive combinations, we can just find the probability of the one negative combination and...

Subtract it from 1

Negative result means:	Positive result means: All five people are not infected
Anfected so all five have to be retested individually	
$\mathrm{P}($ positive result $)=1-\mathrm{P}($ negative result $)$	
0.0728	

Sample
Space

