Logarithmic and Exponential Functions

So let's recap...

$$
\log _{5} 125=x
$$

$$
\log _{a} M+\log _{a} N=\log _{a} M N
$$

$$
\log _{a} M-\log _{a} N=\log _{a} \frac{M}{N}
$$

$$
\log _{a} M^{n}=n \log _{a} M
$$

$$
\log _{a} a^{x}=x
$$

$$
a^{\log _{a} x}=x
$$

And for the calculator...

$$
\log _{a} M=\frac{\log _{b} M}{\log _{b} a}
$$

Which can be done using the two programmed bases
$\log _{10}$ and \ln

More on this one soon...

Ex $4 \quad \log _{3}(x+4)+\log _{3}(2 x-7)=3$

$$
\log _{3}(x+4)(2 x-7)=3
$$

$$
\begin{aligned}
(x+4)(2 x-7) & =3^{3} \\
2 x^{2}+x-28 & =27 \\
2 x^{2}+x-55 & =0
\end{aligned}
$$

$$
(2 x+11)(x-5)=0
$$

$$
x=-\frac{11}{2}, 5 \begin{aligned}
& x=5 \text { can be shown clearly } \\
& \text { to be a solution but... } \\
& \text { try this other solution on } \\
& \text { your calculator }
\end{aligned}
$$

Ex $4 \quad \log _{3}(x+4)+\log _{3}(2 x-7)=3$

$$
x=-\frac{11}{2}, 5 \begin{aligned}
& x=5 \text { can be shown clearly } \\
& \text { to be a solution but... } \\
& \text { try this other solution on } \\
& \text { your calculator }
\end{aligned}
$$

$$
\begin{aligned}
\log _{3}\left(-\frac{11}{2}+4\right)+\log _{3}(-11-7) & =3 \\
\log _{3}\left(-\frac{3}{2}\right)+\log _{3}(-18) & =3
\end{aligned}
$$

Why did this happen?

Enter these two functions in your calculator

$$
y=2^{x}
$$

Texas Instruments

$$
y=(-2)^{x}
$$

T1-84 Plus Silver Edition

+ Texas Instruments

STAT PLOT F1 TELSET F2 FORMAT F3 GALC F4 TABLE FE

$$
y=\log _{3} x
$$

Notice that the graph seems to have the y axis as a vertical asymptote

Now look at some of the table values on the calculator

$$
y=a^{x} \quad a>0
$$

The traits are:

1. Domain: All Reals
2. Range: $y>0$
3. Zeros: None, unless there is a vertical shift
4. y-intercept: $y=1$
5. Horizontal Asymptote: $y=0$
6. Extreme Points: Usually none

The traits are:

The logarithmic function is the inverse of the exponential function. Inverses are functions that cancel each other, like $y=x^{2}$ and $y=\sqrt{x}$.

The general graph of a logarithm can be guessed because all inverses have graphs that are symmetric about the line $y=x$.

Like this...

