

Remember:
$$\frac{C}{d} = \pi$$

$$C = 2\pi$$

Since 30° is $\frac{1}{12}$

of the way around, then the length of this arc is

$$arc length = \frac{1}{12}C = \frac{1}{12}2\pi$$

$$\frac{1}{12}C = \frac{\pi}{6}$$

So for any radius r when the central angle is 30° the length of the arc is...

$$\frac{\pi}{6}r$$

$$30^{\circ} \rightarrow \frac{\pi}{6}$$

Remember:
$$\frac{C}{d} = \pi$$

$$C = 2\pi$$

Since 45 is $\frac{1}{8}$

of the way around, then the length of this arc is

$$arc length = \frac{1}{8}C = \frac{1}{8}2\pi$$

$$\frac{1}{8}C = \frac{\pi}{4}$$

So for any radius *r* when the central angle is 45

$$\frac{1}{8}C = \frac{\pi}{4}r$$

$$45^{\circ} \rightarrow \frac{\pi}{4}r$$

Remember:
$$\frac{C}{d} = \pi$$

$$C = 2\pi$$

Since 60 is $\frac{1}{6}$

of the way around, then the length of this arc is

$$arc length = \frac{1}{6}C = \frac{1}{6}2\pi$$

$$\frac{1}{6}C = \frac{\pi}{3}$$

So for any radius *r* So for any radius r when the central angle is 60 $\frac{1}{6}C = \frac{\pi}{3}r$ angle is 60

$$\frac{1}{6}C = \frac{\pi}{3}r$$

$$60^{\circ} \rightarrow \frac{\pi}{3}r$$

$$30^{\circ} \rightarrow \frac{\pi}{6}r$$

$$45^{\circ} \rightarrow \frac{\pi}{4}r$$

$$60^{\circ} \rightarrow \frac{\pi}{3}r$$

θ °	0°	30°	45°	60°	90°
θ^{rad}	0 ^{rad}	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin θ					
cos θ					

Converting degrees to radians

Multiply by
$$\frac{\pi}{180}$$

Converting radians to degrees

Multiply by
$$\frac{180}{\pi}$$