Law of Cosines

When solving for missing sides and angles with a right triangle, we had the pythagorean theorem plus all the trig functions to use.

 $a^2 + b^2 = c^2$

 $\sin A = \frac{a}{c} \qquad \cos A = \frac{b}{c} \qquad \tan A = \frac{a}{b}$ $\sin B = \frac{b}{c} \qquad \cos B = \frac{a}{c} \qquad \tan B = \frac{b}{a}$

B

a

С

b

But what happens if it is not a right triangle?

l a cos C

a

8

B

С

Remembering that $\cos C = \frac{adj}{hyp}$

Drawing an altitude here will help $h^2 + x^2 = c^2$ Using simple substitution $h^{2} + (b - a \cos C)^{2} = c^{2}$ FOILing the parentheses $h^2 + b^2 - 2ab\cos C + a^2\cos^2 C = c^2$ Replacing the h^2 with $a^2 \sin^2 C$ $a^{2} \sin^{2} C + b^{2} - 2ab \cos C + a^{2} \cos^{2} C = c^{2}$ I'm going to bring together the common a² so I can factor $a^{2} \sin^{2} C + a^{2} \cos^{2} C + b^{2} - 2ab \cos C = c^{2}$

 $a^{2} \sin^{2} C + a^{2} \cos^{2} C + b^{2} - 2ab \cos C = c^{2}$ B Factoring the a² gives us 8 $C a^{2}(\sin^{2} C + \cos^{2} C) + b^{2} - 2ab\cos C = c^{2}$ We do this because recall that $sin^2C + cos^2C = 1$ $a^{2}(1) + b^{2} - 2ab\cos C = c^{2}$ And our result is... b The Law of Cosines $a^2 + b^2 - 2ab\cos C = c^2$

Notice how this is actually the Pythagorean Thm with the added term

The Law of Cosines $a^{2} + b^{2} - 2ab\cos C = c^{2}$ $b^{2} + c^{2} - 2bc\cos A = a^{2}$ $a^{2} + c^{2} - 2ac\cos B = b^{2}$

They're all the same. This is just to assure you that the law applies to any labeling you use for a triangle.

And when we need to use it to solve for a missing angle, we have

$$= \cos^{-1} \frac{a^2 + b^2 - c^2}{2ab}$$

More on this in class...

 $a^2 + b^2 - 2ab\cos C = c^2$ B C = 10Find the missing angle $8^2 + 11^2 - 2(8)(11) \cos C = 10^2$ $-2(8)(11)\cos C = 10^2 - 8^2 - 11^2$ b = 11 $\cos C = \frac{10^2 - 8^2 - 11^2}{-2(8)(11)}$ Be careful entering this into the calculator $C = \cos^{-1} \left(\frac{8^2 + 11^2 - 10^2}{2(8)(11)} \right) \approx 61.121^{\circ}$ $\cos C = \frac{8^2 + 11^2 - 10^2}{2(8)(11)}$

$$C = \cos^{-1}\left(\frac{(8^2 + 11^2 - 10^2)}{(2(8)(11))}\right)$$

$$C = \cos^{-1} \left(8^2 + 11^2 - \frac{10^2}{2} * 8 * 11 \right)$$