Similar Right Triangles \& Geometric Mean

How many similar triangles are there here?
Three
Given both right angles

$$
m \angle A+m \angle C=90^{\circ} \text { so }
$$

$\angle A$ is common to $\triangle A B C$ and $\triangle A D B$
$\angle A \cong \angle D B C$
$\angle C$ is common to $\triangle A B C$ and $\triangle B D C$ $\angle C \cong \angle A B D$

How many similar triangles are there here?

Three
Given both right angles
$\angle A$ is common to $\triangle A B C$ and $\triangle A D B$ $\angle C$ is common to $\triangle A B C$ and $\triangle B D C$

Let's assign some angle measurements

$$
\begin{aligned}
m \angle A & =29^{\circ} \quad m \angle C & =61^{\circ} \\
m \angle D B C & =29^{\circ} \quad m \angle A B D & =61^{\circ}
\end{aligned}
$$

So what are the proportional relationships?

B
So what are the proportional relationships?

Recall with this
B
example how similar triangle proportions work

Not helpful

$$
\frac{x}{26}=\frac{h}{b}
$$

Not helpful

$$
\frac{10}{26}=\frac{5}{b}
$$

Pythagorean
Theorem gives us the remaining sides

Now we can
solve for b
${ }_{13} \frac{76}{26}=\frac{5}{b}$

$$
b=13
$$

We can also recognize the proportions across the
triangles

Pythagorean
Theorem gives us the remaining sides

A ratio of 2 to 1

We know that b will be half of 26

This also shows that we can choose whatever proportions work as long as they are corresponding sides

So what are the proportional relationships in similar right

Let's just focus on these highlighted proportions
Cross multiplying these proportions gives us

$$
h^{2}=x y \quad a^{2}=x(x+y) \quad b^{2}=y(x+y)
$$

This is the one most useful in solving for missing lengths
$h^{2}=x y$ In this case, h is considered the Geometric Mean of x and y
$a^{2}=x(x+y) \quad a$ is considered the Geometric Mean of x and $x+y$
$b^{2}=y(x+y) \quad$ and b is considered the Geometric Mean of y and $x+y$

$$
\begin{array}{rllrl}
9^{2}+6^{2} & =a^{2} & a=\sqrt{9 \cdot 13} & h^{2}=x y & 4^{2}+6^{2}=b^{2} \\
81+36 & =a^{2} & a=3 \sqrt{13} & 6^{2} & =9 y \\
16+36 & =b^{2} & b=2 \sqrt{4 \cdot 13} \\
117 & =a^{2} & & 36 & =9 y \\
a & =\sqrt{117} & & y & =4 \\
52 & =b^{2} & \\
8 & b & =\sqrt{52} &
\end{array}
$$

