Using SOHCAHTOA The Tangent Ratio

SineOppositeHypotenuseCosineAdjacentHypotenuseTTangentOppositeA djacent

SineOppositeHypotenuseCosineAdjacentHypotenuseTangentOppositeAdjacent

Find all three trig functions for angles A and B

$\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{5}{12}$
13

SineOppositeHypotenuseCosineAdjacentHypotenuseTangentOppositeAdjacent

Find all three trig functions for angles A and B

$\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{5}{12}$
13

$$
\tan B=\frac{12}{5}
$$

SineOppositeHypotenuseCosine AdjacentHypotenuseTangentOppositeAdjacent
Find the tangent of angles A and B

$\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{7}{5}$

$$
\tan B=\frac{5}{7}
$$

SineOppositeHypotenuseCosineAdjacentHypotenuseTangentOppositeAdjacent
Note how the tangent ratio changes with the shape of the triangle

Tangent of $a_{1}=1$

SineOppositeHypotenuseCosine AdjacentHypotenuseTangentOppositeAdjacent
Note how the tangent ratio changes with the shape of the triangle

Tangent of $a_{1}=1.3333333333333$

SineOppositeHypotenuseCosine AdjacentHypotenuseTangentOppositeAdjacent
Note how the tangent ratio changes with the shape of the triangle

Tangent of $a_{1}=2$

SineOppositeHypotenuseCosineAdjacentHypotenuseTangentOppositeAdjacent
Note how $\tan ^{-1}$ finds the angle when you already know the tangent

Use the 2 nd key to get the $\tan ^{-1}$ function. This finds the angle when you already know the tangent

SineOppositeHypotenuseCosine AdjacentHypotenuseTangentOppositeAdjacent
Find the missing lengths

