Remember this?

$$
\text { Divide } x^{3}-x^{2}+x-1 \text { by } x-7
$$

We can do this

$$
x^{2}+6 x+43
$$

$$
x - 7 \longdiv { x ^ { 3 } - x ^ { 2 } + x - 1 }
$$

Now there is a simpler way of doing this

$$
\begin{aligned}
& \frac{-\left(x^{3}-7 x^{2}\right)}{6 x^{2}+x} \\
& \frac{-\left(6 x^{2}-42 x\right)}{43 x-1} \\
& \frac{-(43 x-301)}{300}
\end{aligned}
$$

So the remainder is 300

Divide $x^{3}-x^{2}+x-1$ by $x-7$

$$
x^{2}+6 x+43 \text { With a remainder of } 300
$$

Watch this. Can you figure out what's going on?

$$
\begin{array}{rrrr}
7 & 1 & -1 & 1 \\
& -1 \\
& - & \frac{7}{1} & \frac{42}{4} \\
\hline & \frac{301}{300}
\end{array}
$$

And again the result is 300

Divide $1 x^{3}-1 x^{2}+1 x-1$ by $x-7$

Let's try this again but slowly...

$$
\begin{aligned}
& f(x)=x^{3}-x^{2}+x-1 \\
& f(7)=300
\end{aligned}
$$

So we can find function values using this method which is why it is also called Synthetic Substitution

How many roots (zeros) does

$$
y=x^{3}-x^{2}+x-1
$$

have?
In other words, what value(s) for x will give us $y=0$ when we plug them in?

Here is where Synthetic Substitution can help

$$
0=x^{3}-x^{2}+x-1
$$

After setting $y=0$, we could use grouping to factor this and get

$$
0=(x-1)\left(x^{2}+1\right)
$$

We could also use Synthetic Substitution since plugging in 1 would be so easy to do
We are going to choose 1 as our root since it is very easy
to check if this is a good

guess

Remember...

Start with the original coefficient

Multiply by 1 and add to the next coefficient

Repeat the process and if your remainder is 0 , then $(x-1)$ is a factor

$$
\begin{aligned}
& y=x^{3}-x^{2}+x-1 \\
& y=(x-1)\left(x^{2}+1\right)
\end{aligned}
$$

Notice something about this term

$$
y=(x-1)\left(x^{2}+0 x+1\right) \quad \begin{array}{llll}
1 & -1 & 1 & -1 \\
\begin{array}{l}
\text { What remains is in } \\
\text { deginning with order a degree } \\
\text { of } 2 \text { (one smaller than } \\
\text { what we started with) }
\end{array}
\end{array}
$$

Still not sure?

Let's do another one then...

$$
y=1 x^{3}+1 x^{2}-4 x-4
$$

$$
\begin{array}{llllll}
1 & 1 & 1 & -4 & -4 \\
\hline
\end{array}
$$

$$
\frac{-}{1} \quad \frac{1}{2} \quad \frac{2}{-2}-\frac{-2}{-6} \neq
$$

0 Which means what?
That 1 is not a root so $(x-1)$ is not a factor
It does mean that
$(1,-6)$ is a point on the graph of $y=x^{3}+x^{2}-4 x-4$
It also means that

$$
x^{3}+x^{2}-4 x-4=(x-1)\left(x^{2}+2 x-2\right)-\frac{6}{x-1}
$$

Still not sure?
Let's go back and try -1
$y=x^{3}+x^{2}-4 x-4$
$\begin{array}{lllll}-1 & 1 & 1 & -4 & -4\end{array}$
$\frac{-1}{1} \quad \frac{0}{0} \quad \frac{4}{0}$
Which means what?
That -1 is a root so $(x+1)$ is a factor and that

$$
x^{3}+x^{2}-4 x-4=(x+1)\left(x^{2}-4\right)
$$

Since we now know that
$x^{3}+x^{2}-4 x-4=(x+1)\left(x^{2}-4\right)=(x+1)(x-2)(x+2)$
Let's go back and try 2 since we know it will work

$$
\begin{array}{cccc}
& y= & x^{3}+x^{2}-4 x-4 \\
2 & 1 & 1 & -4
\end{array}-4
$$

Which means what?
That 2 is a root so $(x-2)$ is a factor and that

$$
\begin{aligned}
x^{3}+x^{2}-4 x-4= & (x-2)\left(x^{2}+3 x+2\right)= \\
& (x-2)(x+2)(x+1)
\end{aligned}
$$

Show that -2 is a root of $y=x^{4}-16$

$$
\begin{aligned}
& \begin{array}{ccccc}
-2 & 1 & 0 & 0 & 0 \\
\hline & -16 \\
- & \frac{-2}{2} & \frac{4}{4} & \frac{-8}{-8} & \frac{16}{0} \\
y= & \sqrt[(x+2)]{1}-\frac{\left.x^{3}-2 x^{2}+4 x-8\right)}{}
\end{array} .
\end{aligned}
$$

Let's reduce this all the way
$\begin{array}{lllll}2 & 1 & -2 & 4 & -8\end{array}$
$=\frac{2}{0} \frac{0}{4} \frac{8}{0} \quad y=(x+2)(x-2)\left(x^{2}+4\right)$

