4.2 Even Answers

- 2. (a) Absolute min at $\left(\frac{1}{2}, -\frac{49}{4}\right)$
 - (b) Increasing on $\frac{1}{2} < x < \infty$
 - (c) Decreasing on $-\infty < x < \frac{1}{2}$
- 4. (a) No extrema
 - (b) Increasing on $-\infty < x < 0$
 - (c) Decreasing on $0 < x < \infty$
- 6. (a) No extrema
 - (b) Never increasing
 - (c) Decreasing everywhere
- 8. (a) Local max at (0, 9) Absolute min at $(\pm \sqrt{5}, -16)$
 - (b) Increasing on $-\sqrt{5} < x < 0$ and $\sqrt{5} < x < \infty$
 - (c) Decreasing on $-\infty < x < -\sqrt{5}$ and $0 < x < \sqrt{5}$
- 10. (a) Absolute min at $\left(-2, -6(\sqrt[3]{2})\right)$
 - (b) Increasing on $-2 < x < \infty$
 - (c) Decreasing on $-\infty < x < -2$
- 12. (a) No extrema
 - (b) Never increasing
 - (c) Always decreasing
- 14. (a) No extrema
 - (b) Increasing on $-\infty < x < \infty$
 - (c) Never decreasing
- 16. $c = \frac{8}{27}$
- 18. $c = 1 + \frac{2}{\ln 3} \approx 2.820$
- 20. (a) $y = \frac{1}{\sqrt{2}}(x-1)$
 - (b) $c = \frac{3}{2}$

- 22. (a) Not differentiable at x = 1
 - (b) (Secant line in bold)

No parallel tangent line to the

graph of f(x)

(c) No value for c