Calculus Chapter 10 Review

Name

Show all your work. You may use your calculator unless otherwise instructed.

1) Without using your calculator, find the length of the parametric curve $x = e^t \cos t$ and $y = e^t \sin t$ defined over the interval $0 < t < \pi$

$$L = \int_{0}^{\pi} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dx}{dt}\right)^{2}} dt$$

=
$$\int_0^{\pi} \sqrt{2e^{2t}\cos^2t} + 2e^{2t}\sin^2t dt$$

= $\int_0^{\pi} \sqrt{2e^{2t}(\cos^2t + \sin^2t)} dt = \sqrt{2}\int_0^{\pi} e^t dt$

- 2) A particle moves in the xy-plane so that its position at any time t, $0 \le t \le 3$ is given by $x(t) = \frac{t^2}{2} 3\ln(2+t)$ and $y(t) = 3\sin \pi t$.
 - a) At what time t does x(t) attain its minimum value? What is the position (x(t), y(t)) of the particle at this time? Show the work that leads to your answer.

$$x(t) = \min_{x \in \mathbb{Z}} value \quad x'(t) = 0$$
 $x'(t) \quad t = \frac{3}{(2+t)} = 0$
 $t = \frac{3}{2+t}$
 $t = 1$
 t

b) What is the speed of the particle at this time? Show the work that leads to your answer. You may use your graphing calculator to evaluate.

speed:
$$\sqrt{\frac{dx}{dt}}^2 + \frac{dy}{dt}^2$$
 $\frac{dx}{dt} = x'(1) = 0$

$$\frac{dx}{dt} = 3 \hat{n} \cos \hat{n} t = 3 \hat{n} \cos \hat{n} = -3 \hat{n}$$

c) At what values of t over the interval $0 \le t \le 3$ is the particle is on the x-axis? Show the work that leads to your answer.

$$y(t)=0=3\sin \pi t$$

 $\sin \pi t=0$ $t=0,1,2,3,4...$
 $t=1,2$

d) Set up the equation that will determine the total distance traveled by the particle over the interval $0 \le t \le 3$. Evaluate this equation using your graphing calculator.

$$\int_{0}^{3} \sqrt{\left(t - \frac{3}{2+t}\right)^{2} + \left(3 \tilde{n} \cos \tilde{n} t\right)^{2}} dt$$

$$\approx 18.56$$

- 3) A curve is defined by the parametric equations $x = 3t t^3$, $y = 3t^2$ over the interval $0 \le t \le 3$.
 - a) At what value(s) of t is the tangent line vertical?

$$\frac{dx}{dt} = 0 = 3 - 3t^2 \quad t = t \mid t = 1$$
The domain

b) Find the equation of the tangent line at t = 2.

b) Find the equation of the tangent line at
$$t = 2$$
.

$$\frac{dy}{dx} = \frac{6t}{3-3t^2} = \frac{12}{-9} = -\frac{4}{3} \times = 3(2) - 8 = -2 \quad y = 3(4) = 12$$

$$y = 3(4) = 12$$

c) Find d^2y/dx^2 .

$$\frac{d_{3}^{2}}{dx^{2}} = \frac{d(dy/dx)}{dx/dx} = \frac{(3-3t^{2})6-6t(-6t)}{3-3t^{2}} = \frac{18+18t^{2}}{(3-3t^{2})^{3}}$$

d) Without using your calculator, find the length of the parametric curve over the interval $0 \le t \le 3$.

$$\int_{0}^{3} \sqrt{36t^{2} + 9 - 18t^{2} + 9t^{4}} dt$$

$$\int_{0}^{3} \sqrt{9t^{2} + 18t^{2} + 9} dt = \int_{0}^{3} \sqrt{(3t^{2} + 3)^{2}} dt$$

$$= \int_{0}^{3} 3t^{2} + 3 dt = \left[t^{3} + 3t^{3} \right] = 27 + 9 = 36$$