FTC "Part 3"

Name Solutions

Your calculator will be required to complete problem #1. Be sure to show your analytic work before your numeric answer. For this problem, give each of your answers to three decimal places.

- 1) A particle starts at x = 2 and moves along the x-axis with velocity $v(t) = \cos(t^2)$ over the interval $0 \le t \le 3$ where *t* is measured in seconds.
 - (a) Over what intervals is the particle moving to the left?

(b) Find the total distance traveled by the particle over the interval 0 < t < 3.

Ophow 1;
$$\int_{0}^{1.253} v(t) dt - \int_{1.253}^{2.171} v(t) dt + \int_{1.253}^{2.802} v(t) dt - \int_{2.802}^{3} v(t) dt$$

(c) What is the final position of the particle on the x-axis? " $f_1 h_1$ " $\Rightarrow a + + = 3$

We want to find
$$X(3)$$

$$x(3) = x(0) + \int_{0}^{3} \cos(t^{2}) dt$$

= 2 + 0.703 \approx 2.703.

2) Let f be a twice-differentiable function over the interval $-2 \le x \le 4$ and containing the point (1, 3). The graph of its derivative f'(x), consisting of four line segments, is shown below.

(a) Write the equation for the line tangent to f at the point (1, 3)

$$5'(1) = -2$$

$$(y-3 = -2(x-1))$$

- (b) Find f(-2), f(0), and f(4) $f(-2) = f(1) + \int_{-2}^{-2} f'(x) dx = 3 \int_{-2}^{1} f(x) dx = 3 1 = 2$ $f(0) = f(1) \int_{-2}^{1} f'(x) dx = 3 (1) = 4$ $f(4) = f(1) + \int_{-2}^{4} f'(x) dx = 3 + (-5) = -2$
- (c) Given that f(1) = 3, find the value for x other than 1 over the interval $-2 \le x \le 4$ for which f(x) = 3. Justify your answer.

$$f(x) = 3 + \int_{1}^{x} f'(t) dt = 3$$

$$\int_{1}^{x} f'(t) dt = 0 \qquad x = -1 \quad \text{because area}$$
above and below are equal