Name_____

Implicit Differentiation

Think of *y* as a function of *x* so that applying the chain rule(outside-inside) would give us these results:

a)
$$\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$$

outside - inside
b) $\frac{d}{dx}(\sin y) = (\cos y) \frac{dy}{dx}$
outside - inside

1) Find the equation of the line tangent to the circle $x^2 + y^2 = 9$ at the point $(2, -\sqrt{5})$

Find y'(Remember
$$y' = \frac{dy}{dx}$$
)
2) $\sqrt{x} - \sqrt{y} = 5$
3) $x^3 + xy + y^3 = xy^2$

4)
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$
 where *a* is a constant 5) $\sin^2 y = x^2 + 2$

6) $\sin(xy) = 2x + 5$

7) For #1, find
$$\frac{d^2 y}{dx^2}$$