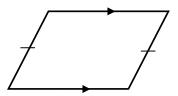
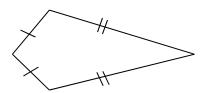

1. Solve for x. Tell the rule(s) used to justify your setup.

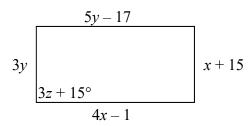
2. Identify the following quadrilaterals as specifically as possible. Give a brief explanation of why you can identify the figure as you did. (Note: drawings are not to scale!)


a)

b)



c)

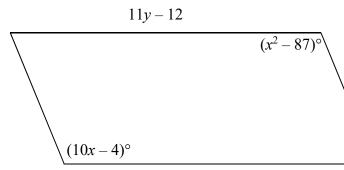


Diagonals are congruent but do not bisect each other

d)

3. Solve for x, y, and z given the figure below is a rectangle.

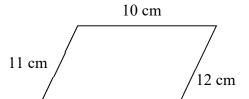
- 4. Find the sum of the interior angles, measure of each interior angle, and measure of each exterior angle for the following *regular* polygons.
 - a) Nonagon
 - b) 15-gon
 - c) Decagon
 - d) 18-gon
 - e) Octagon


5.	Sketch rectangle ABCD. If $AC = x^2 + 2x$ and $BD = 35$ cm, find the value(s) of x .
6.	Sketch each of the following. Mark all congruent sides and/or angles. a) A convex heptagon
	b) A non-convex (concave), equilateral pentagon
	c) An isosceles trapezoid
	d) An equiangular quadrilateral that is not equilateral
	A regular polygon has interior angles of 157.5°. Find the number of sides that the regular lygon must have.

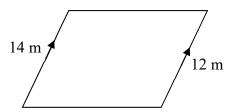
A.M.D.G.

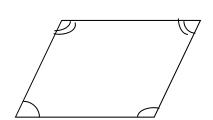
8.	Nar	ne each of the following as specifically as possible given the listed facts.
	a)	An eight-sided polygon that is equilateral and equiangular:
	b)	The figure illustrated to right:
	c)	A regular quadrilateral:
	d)	A quadrilateral with one pair of sides that are congruent and parallel:
	e)	A three-sided polygon with two sides congruent:
9.	Det	ermine whether the statements are TRUE or FALSE. If they are false, explain why.
	a)	All squares are also rectangles.
	b)	The measure of each interior angle in every pentagon is 108°.
	c)	A regular polygon is either equilateral or equiangular.
	d)	If a quadrilateral is a rhombus, then it is also a square.
	e)	All rectangles are parallelograms

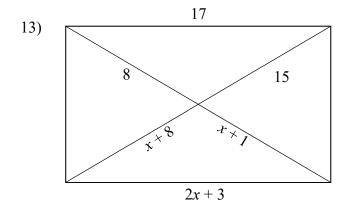
10. Given the parallelogram illustrated below, solve for x and y.


2y + 17

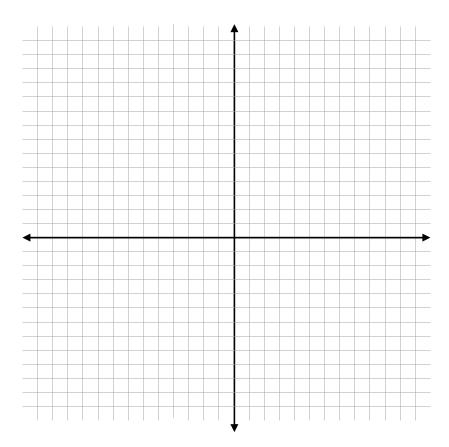
11. Determine if the figures below are parallelograms. If it is a parallelogram, *explain* why. If it is not, *explain* why not.


b)

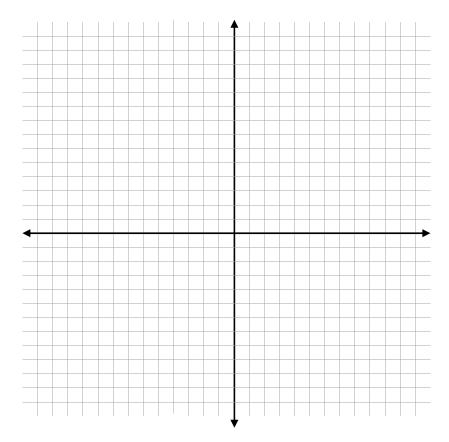

a)


10 cm

c)



Identify the quadrilateral by solving for the given variable



Hint: Note the triangles and their lengths

14. Prove that the quadrilateral with vertices A(-6, 1), B(-4, 4), C(2, 0), D(0, -3) is a parallelogram. Then determine whether the parallelogram is a rectangle, rhombus, or square. Use coordinate geometry to justify your reasoning.

15. What type of quadrilateral is formed by the vertices W(-1, 5), X(-5, 1), Y(-1, -1), Z(3, 1)? Use coordinate geometry to justify your reasoning.

