Area Formulas

Find the area of this kite

Note that the upper half is a triangle with base is d_{2} and height $\frac{1}{2} d_{1}$
The area of this upper triangle is $A=\frac{1}{2} b h=\frac{1}{2} d_{2}\left(\frac{1}{2} d_{1}\right)=\frac{1}{4} d_{2} d_{1}$
The area of the kite is just twice the area of the triangle so $A_{\text {kite }}=\frac{1}{2} d_{1} d_{2}$
b

$$
A=a b
$$

We know the area of a rectangle

What about a parallelogram?

Is congruent to this right triangle

Once we establish the height of the triangle, the area of this parallelogram is

$$
A=a b
$$

$$
A=a b
$$

We know the area of a rectangle
Once we establish the height of the triangle, the area of this parallelogram is

$$
A=a b
$$

The trick would be finding the length of a since the diagonal c would be different

Areas of regular polygons are really about areas of triangles as we will see in 10-2

a is called the apothem

$$
\begin{gathered}
\frac{b}{a}=\tan \theta \\
a=\frac{b}{\tan \theta}
\end{gathered}
$$

b

Areas of regular polygons are really about areas of triangles as we will see in 10-2

$\theta=30^{\circ}$

Why?

It would take 12 of these right triangles to fill the entire hexagon and since the central angles add up to $360^{\circ} \ldots$

Areas of regular polygons are really about areas of triangles as we will see in 10-2

$\theta=30^{\circ}$

If the perimeter of this hexagon is 24 , find the area

$$
\begin{aligned}
& a=\frac{2}{\tan 30^{\circ}}=\frac{2}{1 / \sqrt{3}}=2 \sqrt{3} \\
& A=12\left(\frac{1}{2} b a\right) \\
& A=12(2 \sqrt{3})=24 \sqrt{3}
\end{aligned}
$$

Areas of regular polygons are really about areas of triangles as we will see in 10-2

Areas of regular polygons are really about areas of triangles as we will see in 10-2

Important to remember when finding the area of any regular polygon

$$
\theta=30^{\circ}
$$

$$
\theta=\frac{360^{\circ}}{14} \approx 25.714^{\circ}
$$

$$
\theta=\frac{360^{\circ}}{16}=22.5^{\circ}
$$

How would we find the area of this trapezoid?

If we attach an inverted identical trapezoid we get a parallelogram

$A=h\left(b_{1}+b_{2}\right) \quad$ Since the trapezoid is half of this parallelogram

$$
A_{t r a p}=\frac{1}{2} h\left(b_{1}+b_{2}\right)
$$

