12.5

Angle Relationships within Circles

 $2y = 6\sqrt{6}$ $y = 3\sqrt{6}$ $y\sqrt{3} = 3\sqrt{6}\sqrt{3} = 9\sqrt{2}$

Now before anyone panics...

for each diagonal

Just a few gentle reminders:

$$\widehat{mBC} = m \angle BAC$$

So if

$$m \angle BAC = 60^{\circ}$$

$$\widehat{mBC} = 60^{\circ}$$

But when we talk about *arc length*

$$\boldsymbol{L} = 2\pi r \left(\frac{60^{\circ}}{360^{\circ}}\right)$$

Unlike the arc measurement, arc length will be measured in units of length And for one more bit of review...

Just like inscribed angles, when an angle is formed by a secant line \overline{AB} and a tangent line, \overline{AC}

it's measurement will be half the arc (pg 830)

 $m \angle BAC = 55^{\circ}$

In this case, $m \angle 1$ and $m \angle 2$ (vertical angles) are the average of the two arcs (pg 831)

In other words

$$m \angle 1 = \frac{1}{2} \left(m \widehat{AD} + m \widehat{BC} \right)$$

$$mBC = 110^{\circ}$$

 $m \angle 1 = 80^{\circ}$

Once we get to angles formed outside the circle (pg 832) it becomes half the *difference between the outer and inner arc measurements*. In other words,

The same idea applies here

$$m \angle EAB = \frac{1}{2} \left(m \widehat{DC} - m \widehat{EB} \right)$$

And here as well

 $m \angle DAB = \frac{1}{2} \left(m \widehat{CD} - m \widehat{BD} \right)$

 $m \angle DAB = 17^{\circ}$

Page 833 sums all of this up