Standard 3a: Prove Trigonometric Identities and use them to simplify Trigonometric equations

X

 $\frac{x}{r}$

 $\frac{y}{r}$

 $\frac{y}{x}$

This is the first of three **Pythagorean Identities**

Reciprocal Trig Functions

Reciprocal Trig Functions

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\sec\theta = \frac{1}{\cos\theta}$$

$$\cot\theta = \frac{1}{\tan\theta}$$

And don't forget...

There are two other identities and we can derive them from this one.

$$\frac{\sin^2 \theta + \cos^2 \theta = 1}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x} = \frac{1}{\sin^2 x}$$
$$\frac{1 + \cot^2 \theta = \csc^2 \theta}{\sin^2 x}$$
$$\frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

What if we divide everything by $\sin^2 x$.

Then simplify

Now let's go back and divide the first one by $\cos^2 x$.

Then simplify

$$\tan^2\theta + 1 = \sec^2\theta$$

These are the three **Pythagorean Identities**

These and the other identities on Pg 124...

$$\sin^2\theta + \cos^2\theta = 1$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\tan^2\theta + 1 = \sec^2\theta$$

...will have to be memorized

These alternative forms are very useful because they are "difference of squares" binomials that can be factored. For example,

The Pythagorean identities have alternative versions as well:

$$\sin^{2}\theta + \cos^{2}\theta = \sin^{2}\theta + \cos^{2}\theta + 1 = \sec^{2}\theta + 1 = \sec^$$

EX 1 Prove $\csc x \tan x \cos x = 1$

 $\csc x \tan x \cos x =$ $\frac{1}{\sin x} i \frac{\sin x}{\cos x} i \cos x =$ 1

Notice that the answer is the process, not the final line; the final line was given.

Show that

```
\sin\theta\cot\theta = \cos\theta
```

Rewrite in terms of sine and cosine

$\cos\theta = \cos\theta$

These are proofs but not as rigorous. Some tips on how you can approach the tougher ones can be found on page 130 but here is a summary of them:

These are proofs but not as rigorous. Some tips on how you can approach the tougher ones can be found on page 130 but here is a summary of them:

• Write everything in terms of sine and cosine

This often works though not always. Still, it can be a good way to start as you saw in the first example.

• *Look for squares* - Check for Pythagorean Identity substitutions (squared trig functions). If a direct substitution is there, use it.

 $\cos^2 x(1 + \tan^2 x) =$

• *Parentheses* - Distribute if parentheses get in the way. Factor if parentheses can be helpful

 $\cos x(\sec x + \tan x) = -$

• *Common Denominators* - If you have fractions that need to be added or subtracted, look for common denominators

$$\frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} =$$

Show that

Show that

$$\sin\theta(1+\cot^2\theta)=\csc\theta$$
 Notice

Notice the identity first

$$\sin\theta(\csc^2\theta) = \csc\theta$$

 $\frac{1}{\sin\theta} = \csc\theta$

Remember that you're using the identities on Pgs. 124 & 125

Assignment 3.1