Special Parallelograms

Rhombus
Rectangle
Square

This is a Rhombus
What makes it a Rhombus?

$$
\begin{aligned}
& \overline{A B} \cong \overline{B C} \cong \overline{D C} \cong \overline{A D} \\
& \angle 1 \cong \angle 2 \\
& \angle 3 \cong \angle 4 \\
& \angle 5 \cong \angle 6 \\
& \angle 7 \cong \angle 8
\end{aligned}
$$

All four sides are congruent
Both diagonals are perpendicular bisectors
Both diagonals are angle bisectors

This is a Rhombus
What makes it a Rhombus?

$\overline{A B} \cong \overline{B C}$

Since all four sides are congruent and it's already known to be a parallelogram, we only need to show that two consecutive sides are congruent

This is a Rectangle
What makes this a Rectangle?

$$
A C=B D
$$

Do the diagonals bisect each other?

Since it is a parallelogram, yes.

More than that,

$$
\overline{A E} \cong \overline{C E} \cong \overline{B E} \cong \overline{D E}
$$

$$
m \angle 1 \neq m \angle 2
$$

It should be noted that the diagonals do not necessarily bisect the angles.

This is a Rectangle

One right angle
All you have to show here is one of them

See the theorems that start on Pg. 388

This is a Rectangle
What makes this a Square?

All four sides are congruent
Both diagonals are perpendicular bisectors
Both diagonals are angle bisectors

It is already a rectangle
$\overline{A C}=\overline{B D}$
$\overline{A B} \cong \overline{B C} \cong \overline{D C} \cong \overline{A D}$
$m \angle 1=m \angle 2$

The diagonals bisect the opposite angles which means that...

It is also a rhombus
... and a rectangular rhombus is also known as a square

By the way,

$$
m \angle 1=m \angle 2=45^{\circ}
$$

This is a Rectangle

All Quadrilaterals

