LSRL - Least Squares Regression Line Use the context of the problems and ALWAYS add the write words in $\hat{y} = a + bx$ predicting hat place of y and x. More on this shortly slope y-intercept The TI has selections for both versions of the equation (for reasons we $\hat{y} = ax + b$ need not discuss here). We tend to favor the one that is easiest to find on the menu slope y-intercept but either is OK Use your calculator to find the LSRL-•Put data in L₁ and L₂. Stat \rightarrow Calc \rightarrow 8. LinReg(a + bx) \rightarrow L₁, L₂, Y₁ •Note: Make sure your diagnostics are on: 2nd \rightarrow Catalog \rightarrow Scroll down to Diagnostics $On \rightarrow Enter$ •Y₁:Vars \rightarrow Y-Vars \rightarrow I. Function \rightarrow Y₁

LSRL - Least Squares Regression Line $\hat{y} = a + bx$ y-intercept slope

You must be able to interpret the slope and y-intercept IN CONTEXT!!!

Sope: For every increase of one (unit) in (context of x), there is an predicted average (increase, decrease) in (context of y) of (slope)(units).

Example: y = height of a plant in cm, x = age in months, where $y^{2} = 1.2 + 2.3x$ For every additional month, there is a predicted average increase in the plant's height of 2.3 cm.

y-intercept: When the (context of x) is 0 (unit), I would predict that the (context of y) would be (y-intercept).

Example: y = height of a plant in cm, x = age in months, where $y^{2} = 1.2 + 2.3x$ When the plant is 0 months old, I would predict that the height would be 1.2cm.

Remember the y-intercept may not be a meaningful value, like this one - recognize **extrapolation.**

How to find the LSRL

Or this one. Either is fine

Let's see it done on the calculator

Here we will see L₃ represent the x variable and L₄ represent y

These are just points on the line y = 2x + 3

How do we find and $\hat{y} = a + bx$ graph the LSRL? \longrightarrow $\hat{y} = a + bx$

These are just points on the line y = 2x + 3

Notice the value of r

How do we find and $\hat{y} = a + bx$ graph the LSRL? $\longrightarrow \hat{y} = a + bx$

These are just points on the line y = 2x + 3

Notice the value of r

Let's do this again and see how the line fits perfectly.

What do we mean by $\hat{y} = a + bx$ predicting?

We'll make some slight changes to a couple of y values and then notice

What do we mean by $\hat{y} = a + bx$ Notice how exact linear correlation looks

predicting?

Not that this really happens in the real world but...

What do we mean by $\hat{y} = a + bx$ predicting?

Now notice the change when a few values deviate just a little bit.

What do we mean by predicting?

 $\hat{y} = a + bx$

Notice the difference between predicted and actual y values

Two Lesser Known Properties of the LSRL

•The LSRL passes through $(\overline{x}, \overline{y})$

•The slope of LSRL can also be found with this equation -

$$b = r \frac{s_y}{s_x}$$

MINITAB Outputs

What is Regression?

Model math functions to fit our data

- •Linear Regression
- •Quadratic Regression
- Cubic Regression
- Power Regression
- •Sinusoidal Regression
- •Exponential Regression
- Logarithmic Regression
- •Logistic Regression

You will choose the best fitting model and use that model to predict.