LSRL - Least Squares Regression Line

Use the context
ALWAYS add the predicting hat

More on this shortly
The TI has selections for y-intercept of the problems and write words in place of y and x. both versions of the equation (for reasons we need not discuss here). We tend to favor the one that is easiest to find on the menu but either is OK

$$
\begin{gathered}
\hat{y}=a x+b \\
\text { slope }
\end{gathered}
$$

slope

LSRL - Least Squares Regression Line

$\hat{y}=a+b x$
 y-intercept slope
 You must be able to interpret the slope and y-intercept IN CONTEXT!!!

Slope: For every increase of one (unit) in (context of x), there is an predicted average (increase, decrease) in (context of y) of (slope)(units).

Example: $y=$ height of a plant in $\mathrm{cm}, x=$ age in months, where $y^{\wedge}=1.2+2.3 x$ For every additional month, there is a predicted average increase in the plant's height of 2.3 cm .
y-intercepte When the (context of x) is 0 (unit), I would predict that the (context of y) would be (y-intercept).

Example: $y=$ height of a plant in $\mathrm{cm}, x=$ age in months, where $y^{\wedge}=1.2+2.3 x$ When the plant is 0 months old, I would predict that the height would be 1.2 cm .

Remember the y-intercept may not be a meaningful value, like this one - recognize extrapolation.

How to find the LSRL

Or this one. Either is fine

$\operatorname{LinReg}_{2}, \mathrm{y}=\mathrm{b} \times \text {) } \mathrm{L},$

LinReg(ax+b)
Xlist:L1
Ylist:L2
FreaList:
Store RegEQ: Y1
Calculate

Let's see it done on the calculator

Here we will see L_{3} represent the x variable and L_{4} represent y

These are just points on the line $y=2 x+3$

How do we find and graph the LSRL? $\hat{y}=a+b x$

These are just points on the line $y=2 x+3$

Notice the value of r

How do we find and graph the LSRL? $\longrightarrow \hat{y}=a+b x$

These are just points on the line $y=2 x+3$

Notice the value of r

Let's do this again and see how the line fits perfectly.
$\begin{aligned} & \text { What do we mean by } \\ & \text { predicting? }\end{aligned} \hat{y}=a+b x$

We'll make some slight changes to a couple of y values and then notice

What do we mean by predicting? $\quad \hat{y}=a+b x$

Notice how exact linear correlation looks

What do we mean by predicting? $\quad y=a+b x$

Now notice the change when a few values deviate just a little bit.

What do we mean by predicting?
$\hat{y}=a+b x \quad$ Notice the difference between predicted and actual y values

Two Lesser Known Properties of the LSRL

-The LSRL passes through (\bar{x}, \bar{y})
-The slope of LSRL can also be found with this equation -

$$
b=r \frac{S_{y}}{S_{x}}
$$

MINITAB Outputs

What is Regression?

Model math functions to fit our data

- Linear Regression
- Quadratic Regression
- Cubic Regression
- Power Regression
- Sinusoidal Regression
- Exponential Regression
-Logarithmic Regression
-Logistic Regression

You will choose the best fitting model and use that model to predict.

