Sampling Distributions

- Mean
- Standard Deviation
- Normality - ?
-Calculate Probabilities
We will first focus on Sampling Distributions for Sample Means
This just means that it has a normal distribution with mean μ

$$
\bar{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right) \quad \text { and standard deviation } \frac{\sigma}{\sqrt{n}}
$$

Parameter - Greek alphabet

Statistic - Our alphabet

We will use statistics to
parameters.

Parameter

Population

Sample

We won't always have the same sample ... so we won't always get the same mean for our statistics =

SAMPLING VARIABILITY

The population is the entire group being studied.
A sample is part of the population being surveyed.

Recall that replication is important in experimentation

yple
12ce
SS
Median = Mean = seat times

So what we are consolidating here are the means of all the samples to estimate the population mean

Population Distribution

$$
x \sim N(100,5)
$$

Sampling Distribution of the Sample Mean

$$
\bar{x} \sim N\left(100, \frac{5}{\sqrt{n}}\right)
$$

We can see here that as n increases, the standard deviation gets smaller because a larger n gets us closer to the actual mean

Histogram of xbar 20

Histogram of xbar_10

Histogram of xbar_30

If the population distribution is $\sim N$, then the sampling distribution of \bar{x} will be $\sim N$, no matter what the sample size.

Notice that as the sample size increases - the centers stay the same, the spreads become smaller, and the shape of the sampling distribution gets closer to a normal curve.

Population Distribution

$$
x \sim \operatorname{SL}(110,10)
$$

Heights of a Population of Children

Sampline Distrinufin of $\overline{\mathrm{S}}$

If the population distribution is not normal, then the sampling distribution of \bar{x} will not necessarily be normal.

Sampling Distributions for Sample Means

- The mean of the sampling distribution is the same as the mean of the population:

$$
\mu_{\bar{x}}=\mu_{x}
$$

- The standard deviation of the sampling distribution gets smaller according to this equation:

$$
\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}
$$

- Normality is attained in one of 2 ways:
- The population distribution is stated to be normal.
- The Central Limit Theorem states that as the sample size n increases, the sampling distribution becomes more normal (regardless of the shape of the population). In practice, if $n \geq 30$, we assume the distribution is approximately normal.
- Calculate probabilities using normalcdf

A Piece of Advice -

In "Mean Land" - (as opposed to Proportion Land which is next section)

- Normality is attained in one of 2 ways:
- The initial distribution is stated to be normal.
- The Central Limit Theorem states that as the sample size n increases, the sampling distribution becomes more normal (regardless of the shape of the population). In practice, if $n \geq 30$, we assume the distribution is approximately normal.

Free Response

Suppose that $T=2 X+3 Y$, where is X your score on the multiple-choice part of a test, Y is your score on the written part of a test, and T is your total score. In this case, your total score is calculated by doubling your multiple-choice score and tripling your written score. Suppose $X \sim N(30,7)$ and $Y \sim N(20,13)$
(a) What is the probability that T will be greater than 130 ?

$$
\begin{aligned}
\mu_{T} & =2(30)+3(20)=120 \\
\sigma_{T}^{2} & =2^{2} \cdot 7^{2}+3^{2} \cdot 13^{2}=1717 \\
\sigma_{T} & =\sqrt{1717}=41.44 \\
T & \sim N(120,41.44)
\end{aligned}
$$

(b) Suppose that we find three students' scores independently of one another. What is the probability that at least one of these measurements will be greater than 130 ?

$$
P(X \geq 1)=P(X=1)+P(X=2)+P(X=3)=1-P(X=0)
$$

$$
=1-\text { binompdf }(3,0.405,0)=0.789
$$

$$
\begin{aligned}
& \text { success }=\text { measurement }>130 \\
& \quad 3 \text { independent trials } \\
& n=3 \\
& \quad X \sim B(3,0.405)
\end{aligned}
$$

(c) What is the probability that the mean of the three independent scores will be greater than 130 ?
$\bar{T} \sim N\left(120, \frac{41.44}{\sqrt{3}}=23.925\right)$
$P(\bar{T}>130)=\operatorname{normalcdf}(130,1 E 99,120,23.925)=0.338$

