Raven, convinced that more of her classmates need to understand that Patrick Mahomes is the GOAT, takes a random survey of 50 SI students to see how many believe that Mahomes is, in fact, the GOAT. Her results are that 31 believe he is.

Given that this is one random sample, what can we say about the actual proportion of SI students who believe that Mahomes is the GOAT based just on Raven's random sample?

Biased vs. Unbiased Statistics

Statistic

三
Point Estimate

Sample proportion

Sample mean

High Cost Risk

Lower Cost Risk

Point Estimate $=$ one value to estimate the parameter based on sample data (we've called these statistics all year).
Confidence Intervals = range of values to estimate the parameter
We use our point estimate (our sample mean or sample proportion) to construct our confidence interval
$\begin{gathered}\begin{array}{c}\text { Developing a CI involves } \\ \text { using } z \text { scores so let's try a } \\ \text { little algebra on this }\end{array}\end{gathered} \quad z=\frac{\bar{x}-\mu}{\sigma}$

$$
\begin{aligned}
z \sigma & =\bar{x}-\mu \\
\mu & =\bar{x}-z \sigma
\end{aligned}
$$

Since z can be positive or negative and the true mean μ can be greater than or less than our sample mean, we can write this:

$$
\mu=\bar{x} \pm z \sigma
$$

So our confidence interval for the point estimate would be between these two values:

$$
\bar{x} \pm z \sigma
$$

Since we'll be looking at proportions in this unit, we'll use this interval:

$$
p=\hat{p} \pm z \sigma
$$

$p=$ the true proportion of a population
$\hat{p}=$ the sample proportion

Point Estimate $=$ one value to estimate the parameter based on sample data (we've called these statistics all year).
Confidence Intervals = range of values to estimate the parameter

We are 90% confident that the true value of p (population proportion)
or
the true value of μ (population mean)
is within the given interval
Remember, this all started with z-scores

$$
\mu=\bar{x} \pm z \sigma
$$

$$
p=\hat{p} \pm z \sigma
$$

Confidence Intervals

General CI Formula

Statistic \pm (Critical Value) $($ Standard Deviation)

Let's start with the sample proportion confidence interval: $\hat{p} \pm z \sigma$

1 Sample Proportion CI Formula

Use Table or Calculator to get the z critical value

Notice the s.d. of the sample

This is called the Margin of Error
Here are three z values to remember...

Margin of Error
General MOE Formula
(Critical Value)(Standard Deviation) z-score

Standard Error

$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

1 Sample Proportion MOE Formula

If \hat{p} is unknown use $\hat{p}=0.5$.
This will give us a conservative estimate for our sample size.

But why 0.5 ? Hint: Pre-Calc veterans can help here.

$$
\hat{p}(1-\hat{p})=\hat{p}-\hat{p}^{2}
$$

Which is an upside down parabola that when graphed between 0 and 1 has it's max value at...?

$$
\hat{p}=0.5
$$

Because we want our MOE to be large enough to contain the error estimation.

Assumptions for 1 Sample Proportion Confidence Intervals:

1. Random Sample or Sample Represents Population
2. $n \hat{p} \geq 10$ and $n(1-\hat{p}) \geq 10$

Deal-breaker!
3. SSSRTP

Allows us to sample without replacement Sample Sufficiently Small Relative to Population (10\% rule)

Interpretation for 1 Sample Proportion Confidence Intervals

We are __\% confident that p, the true proportion of \qquad , is between \qquad and \qquad .

Interpretation for the Confidence Level of a 1 Sample Proportion Confidence Interval
We used a method to construct this estimate that in the long run will successfully capture the true value of p \qquad \% of the time

Interval vs. Level

A confidence interval gives an estimated range of values which is likely to include an unknown population parameter, the estimated range being calculated from a given set of sample data.
If independent samples are taken repeatedly from the same population, and a confidence interval calculated for each sample, then a certain percentage (confidence level) of the intervals will include the unknown population parameter. We refer to this as the confidence level.

94 intervals were good 6 were bad

The higher the level, the wider the interval.

ALWAYS check your assumptions and interpret your interval, even you are not specifically asked to in the problem. Just do it. Seriously.

General Work Flow -
1. Assumptions (proportions from Unit 5)
2. Construction of (Confidence) Interval
3. Interpretation(s)

Try the examples and checkpoint questions in the notes

Raven, convinced that more of her classmates need to understand that Patrick Mahomes is the GOAT, takes a random survey of 50 SI students to see how many believe that Mahomes is, in fact, the GOAT. Her results are that 31 believe he is.

Construct a $90 \%, 95 \%$, and 99% confidence interval for true proportion of Mahomes believers

$$
\hat{p}=\frac{31}{50}=0.62 \quad \sigma_{\hat{p}}=\sqrt{\frac{(.62)(.38)}{50}}=0.0686 \quad 50(.62) \geq 10 \checkmark
$$

Check assumptions

50 is less than 10% of student body

$$
\begin{array}{ccc}
90 \% \mathrm{CI} & 95 \% \mathrm{CI} & 99 \% \mathrm{CI} \\
z=1.645 & z=1.96 & z=2.576 \\
0.62 \pm 1.645 \sqrt{\frac{(.62)(.38)}{50}} & 0.62 \pm 1.96 \sqrt{\frac{(.62)(.38)}{50}} & 0.62 \pm 2.576 \sqrt{\frac{(.62)(.38}{50}} \\
(0.507,0.733) & (0.485,0.755) & (0.443,0.797)
\end{array}
$$

Interpretation for 1 Sample Proportion Confidence Interval
We are 90% confident that p, the true proportion of Mahomes believers, is between 0.507 and 0.733 (or between 50.7% and 73.3%)
Confidence Level
We used a method to construct this estimate that in the long run will successfully capture the true value of $p 90 \%$ of the time

Interpretation for 1 Sample Proportion Confidence Interval

We are 95% confident that p, the true proportion of Mahomes believers, is between 0.485 and 0.755 (or between 48.5% and 75.5%)

Confidence Level
We used a method to construct this estimate that in the long run will successfully capture the true value of $p 95 \%$ of the time

Interpretation for 1 Sample Proportion Confidence Interval

We are 99% confident that p, the true proportion of Mahomes believers, is between 0.443 and 0.797 (or between 44.3% and 79.7%)

Confidence Level
We used a method to construct this estimate that in the long run will successfully capture the true value of $p 99 \%$ of the time

Raven, convinced that more of her classmates need to understand that Patrick Mahomes is the GOAT, takes a random survey of 50 SI students to see how many believe that Mahomes is, in fact, the GOAT. Her results are that 31 believe he is.

Those were some pretty wide intervals. How do you supposed we could reduce them?

How about a sample size of 140 ?

$$
\hat{p}=\frac{87}{140}=0.621 \quad \sigma_{\hat{p}}=\sqrt{\frac{(.621)(.379)}{140}}=0.041
$$

Check assumptions

$$
\begin{aligned}
140(.62) & \geq 10 \\
140(1-0.62) & \geq 10
\end{aligned}
$$

140 is barely less than 10% of student body
95% CI with sample size $=50$

$$
\begin{gathered}
z=1.96 \\
0.62 \pm 1.96 \sqrt{\frac{(.62)(.38)}{50}}
\end{gathered}
$$

$$
(0.485,0.755)
$$

95% CI with sample size $=140$

$$
z=1.96
$$

$$
0.62 \pm 1.96 \sqrt{\frac{(.62)(.38)}{140}}
$$

(0.541, 0.702)

Raven, convinced that more of her classmates need to understand that Patrick Mahomes is the GOAT, takes a random survey of 50 SI students to see how many believe that Mahomes is, in fact, the GOAT. Her results are that 31 believe he is.
95% CI with sample size $=50 \quad 95 \%$ CI with sample size $=140$
$0.62 \pm 1.96 \sqrt{\frac{(.62)(.38)}{50}}$
($0.485,0.755$)

$$
0.62 \pm 1.96 \sqrt{\frac{(.62)(.38)}{140}}
$$

(0.541, 0.702)
$n=140$ $\stackrel{x}{x}$

